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Last time: Defining metastable and unstable regions on phase diagrams

Conditions for stability as a function of composition

« For closed syslems al constant temperature and pressure, the Gibbs free energy is minimized with
respect 10 fluctuations in its other extensive vanables, Thus, if we allow the composition of a binary
system to vary, the system will move toward the minimum in the free energy vs. X curve;
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« We can perform a Taylor expansion for a fluctuation in Gibbs free energy. assuming the only variable that
can vary is composition {Xg):
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a;
. Phase boundaries (BINODALS)
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( a é— ) ( £ ) Phase Boundaries (BINODALS)
S X3 = \O% RINDA Figure by MIT OCW.
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Phase transformations occurring in unstable and metstable regions of the phase diagram result in very
different microstructures: =

rlgure tr)e rr;\O\:jed fonp:(]r'gnht rze{?:g - Figure removed for copyright reasons.
O Oy TR S : Source: Figure 6.21 (a) in Allen and Thomas text.

o Nucleation and growth occurs from discrete points in a system, while spinodal decomposition
occurs simultaneously throughout a system. You can view a computer simulation of the
composition evolution during spinodal decomposition of a binary system of two metals at:
http://math.gmu.edu/~sander/movies/spinum.html.
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Second-order phase transitions

First-order vs. second-order phase transitions

¢ The phase transitions we have focused on thusfar- melting of a crystalline solid, boiling of a liquid, or
structural transformations of allotropes from one crystal structure to another are known as first-order
transitions. The ‘order’ is noted by whether the transition is accompanied by a discontinuity in a first-,
second-, or higher-order derivative of the Gibbs free energy. In addition to first-order transitions, there
are continuous phase transitions, including second-order transitions and lambda transitions. As you will
expect, the second-order phase transitions occur with a discontinuity in a thermodynamic quantity that is a
second derivative of the Gibbs free energy. Two of the most important continuous phase transitions are the
glass transition and order-disorder transitions.
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Flgure 26.4 Orderipg’in matal alloys. Two ¢ifferent atom types are Interspersed: (a)
ordered at low tepfperature, and (B) disordered at high temperature. Source: G

(order-disorder figure- Dill and Brombergq)

Careri, Order, Disorder in Marter, English language translation by K Jarretr,
. . i Benjamin Cdmmings Pub. Co., Reading. MA (1984).
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Examples of order-disorder transitions

Metallic solutions:

Order-disorder transitions are found in many classes of materials:

Fall 2005
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Organic-inorganic co-crystals: .
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Projection of the low-temperature structure of (CH3),NBF, on the ab plane. In the high-temperature
phase, the orientations of the BF4 groups are randomly distributed among the four orientations obtained
by successive 90° rotations around the B-F axis perpendicular to the drawing.

Figure by MIT OCW.
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The temperature dependence of the molar heat capacity for
two individual DNP monomer single crystals. The full curve
shows a Debye fit.

Figure by MIT OCW.
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Block copolymers:

Fall 2005
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Statistical Mechanics and Models of Materials

Heat and the microscopic state of materials

¢ \We have so far utilized macroscopic thermodynamics (what is usually referred to as ‘classical’
thermodynamics) to understand the behavior of materials as a function of their environment (T, P,
composition, reactions, etc.). Classical thermodynamics does not rely on a theory of the molecular
behavior of matter- it explains macroscopic phenomena (involving ~Avogadro’s numbers of atoms) based
on the laws of thermodynamics- which were formulated without knowledge of molecular details.

¢ The functional form of free energies/chemical potentials, entropies, and enthalpies is not predicted by
classical thermodynamics, because these depend on the molecular details of materials- their atomic
structure and bonding. In a practical sense, this doesn’t limit the power of classical thermodynamics,
since all of these thermodynamic functions can be empirically measured- using calorimetry,
electrochemistry, and other experimental methods.
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¢ In some cases we may wish to understand how the molecular structure of a material influences its
thermodynamic properties, or predict how new materials may behave thermodynamically. One way to
proceed is to develop molecular scale models for the thermodynamic behavior of materials- such models
are the realm of statistical mechanics. We will now change gears for a few lectures and examine the
fundamentals of statistical mechanics, how entropy relates to the microstates available to the system at a
molecular level, and how simple models of materials are formulated, which can predict the macroscopic
properties of materials.

¢ We have shown in our discussions of bonding that the energies (internal energy) of electrons in
atoms and molecules are quantized. In addition, you learned that molecules themselves may have
quantum mechanical vibrations in crystals, which are likewise quantized in their allowed energies:

A reminder from lecture 12 in your bonding notes:

Images removed due to copyright reasons.
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3.012 Fundamentsls of Materialy Science: Bonding - Nicola Marzari (MIT, Fall 2005)

A fundamental goal of statistical mechanics

+« Thermal energy (heat) transferred to a molecule does not change the nature of the available energy
levels, but it does change which energy levels are occupied:
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e At finite temperature, molecules (or in some cases, electrons within a molecule) are excited to some
distribution among the available energy levels; with increasing thermal energy in the system, they are
able to access higher and higher energy levels. One of the main objectives of statistical mechanics
is to predict how the energy levels are occupied for a given total quantity of thermal energy. This
occupation of states in turn dictates macroscopic thermodynamic properties.
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A simple model to introduce the concept of microstates: the Einstein solid

e Ourintroduction to the connection of thermodynamic quantities to microscopic behavior begins by
considering a simple model of a monoatomic crystalline solid- models of materials are the starting
point for statistical mechanics calculations.

e Suppose for definiteness we have a diamond, where each carbon atoms is tetrahedrally bonded
(covalently) to its neighbors. As a model for how this material behaves in response to temperature, we
propose that the most important degree of freedom available to the atoms to respond to thermal energy is
vibration of the atoms about their at-rest positions.

o The bonding between atoms creates a potential energy well in which the atoms are centered at
their at rest position. Oscillations of the atoms about the at rest position can be induced by
thermal energy in the material. The potential is called a harmonic potential because of its shape-
similar to the potential of a spring in classical mechanics. Because the oscillation of the atoms is
constrained by bonding to center about their at-rest positions in the crystal lattice, the energy of
vibration for each atom is quantized:

Model for a 3-atom solid as 1D harmonic oscillators

Model for a 3-atom solid as 1D harmonic oscillators
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e ...where his Planck’s constant (h = 6.62x10% gm cm? sec?) and v is the frequency of the atomic
vibrations. The total energy of the solid is the sum of the individual energies of each oscillator:

Let Eqy = (7/2)e:
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6 possible microstates
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= The total number of allowed microstates is a parameter we will refer lo again and again; we give it
the symbol £2. Forthe system above, (2 =&, The collection of all €2 microstates for a given
system is called its ensemble. (For the case of a system with fixed (E,V N) it is referred to as the
microcanonical ensemble).

Distinguishable vs. indistinguishable atoms/particles

= Two cases arise in modeling real systems: one where we can identify each atom unigquely, and the case
of atoms being identical and indistinguishable,

+ [fwe had indistinguishable atoms, then we would only be able to observe the unique microstates, whose
nurnber is given the symbol W

W=2
Unique states: j=1 j=2
24 @
Energy 1 & @
0l — 9o —a—
Q=3 =3

Q=0,+0,=6 total microstates

o We have collected the individual microstates now into 2 groups characterized by the number of
atoms in each energy level (N, n,, and n2). We will call the set of microstates that has a given set
of occupation numbers a stafe (as opposed to microstate). The total number of distinguishable
stales is W,

* For our overy-simplified 3-atom model with a low total energy of Ejxa. = (7/2)«, the number of distinct
arrangements is small. However, for a material containing a mole of atloms at room temperalure, the
number of possible ways to occupy the available energy levels is enormaous. Thus, rather than writing
diagrams of all lhe possible microstates, we become concemed with the probability of finding a cerain set
of microstates J in the ensemble that have a given distribution of the atoms among Lhe energy levels.
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The first postulate of statistical mechanics

¢ The first postulate of statistical mechanics tells us the probability of each of these arrangements being
found in the ensemble:

= Question: what kind of thermodynamic system is this ensemble?

= This postulate is often called the principle of equal a priori probabilities. 1t says that if the
microstates have the same energy, volume, and number of particles, then they occur with
equal frequency in the ensemble.

o This postulate tells us what the p;'s for the two states in our 3-atom Ey,=2 system are:

= We have atotal of L = 2 states, (3 microstates in each of the two unique states j=1, j=2).
Thus the probability for each state is:

= Each state has a frequency of 50% in the ensemble.
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