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Last Time
Single-component phase diagrams and the Gibbs phase rule
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o There is one unique value of pressure and temperature, the triple point, that can allow the 3
phases to co-exist; any change in the variables of the system causes the equilibrium to shift to

one between only 1 or 2 phases.

Constraints on the shape of phase boundaries (coexistence curves): The Clausius-Clapeyron

equation
e For 2 phases in equilibrium (let’s use the example of solid and liquid in equilibrium at the melting
temperature):

To find a nearby condition of T and P where the two phases are still in equilibrium, we
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¢ The Clausius-Clapeyron equation dictates the slope of the two-phase co-existence curve for single-
component materials. We already know that the enthalpy change on melting is typically positive,

therefore the sign of the change in volume on melting will usually dictate whether the slope of Pvs. T is
positive or negative.
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Example single-component phase diagrams

¢ The phase diagram of water:
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(source: http:www.Isbu.ac.uk/water/phase.html)

« Water transitions through increasingly dense crystal structures as pressure is increased:
Courtesy of London South Bank University. Used with permission.
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Courtesy of London South Bank University. Used with permission.
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CARBON PHASE DIAGRAM
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Temperature vs. pressure phase diagram for carbon: A diamond is not forever.
Figure by MIT OCW.
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Figure by MIT OCW.
Temperature vs. pressure phase diagram for iron.
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Walking along lines of constant temperature or pressure in a single-component phase diagram

« Consider now how the free energy varies as we move along a li a single-component phase diagram
at constant pressure or constant temperature: e P
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Graphical constructions of the free energy in mixtures and solutions

« KEY CONCEPTS: I|deal solutions are models for materials that have similar cryslal structures and
bonding. Formation of an ideal solution from its unmixed components is always sponlaneous, because
the free energy of mixing has no penalizing enthalpy term (there are no unfavorable bonding interactions)
and the entropy gain on mixing is always posilive.

« |n addition to mapping out stable phases for single-component systems, phase diagrams can also he
used to chart stable phases as a function of temperature (or pressure) vs, compaosition for binary (2-
component) or ternary (3-component) systems. In order to understand how the phase boundaries in
systems of more than one component arise, we will first discuss another useful graphical constructions:
free energy vs. composition diagrams.

Free energy diagrams of ideal solutions

« Earlier we introduced the general solution model for the chemical potential:
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+ \When the aclivities of the componentls are equal to their compositions, the solution is ideal.
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+ Knowing the chemical potentials of the components, we can determine the total free energy of the
solution. What does a plot of the tolal free energy for a binary ideal solution of two components A and B
look like vs. the composition X?

o The total molar free energy for the solution is: C=2_
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Pore

Mixing to form

All we need to plot the free energy for a given temperature and pressure is the standard state
chemical potential of each component. (For many materials of interest, this data is available in
databases and published tables).

= Let’s look at what the free energy curve looks like for a hypothetical A/B solution at a
fixed pressure that has the following parameters:
e ua’=-3.0KJmole
e ug’=-1.0KJmole
e T=300K
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= |deal solutions always give curves with this qualitative nature; the depth of the “smile”

and its tilt are controlled by the specific values of T and the standard state chemical
potentials of the pure components.

ideal solutions always occurs spontaneously

o The free energy diagram allows us to readily determine what a system gains (thermodynamically) by
forming a solution. Nearly ideal solid solutions can form for materials that have compatible crystal
structures, similar bonding, and similar elemental/molecular sizes. Suppose | have a Ge-Si solid
solution (a useful semiconductor material), which behaves very nearly as an ideal solution.
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o Before formation of the solution, (i.e., imagine a crystal of pure Si bonded to a crystal of pure Ge) the
molar free energy of the system is simply the sum of the free energies per mole of each pure
component multiplied the total mole fraction:
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Ideal solutions have only an entropic contribution to the free energy of mixing: intermolecular
interactions are presumed to be the same in the two components

¢ \What are the changes in enthalpy and entropy that occur on mixing to form an ideal solution? O S
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Extracting chemical potentials from plots of the free energy

+ \We can learn more from free energy diagrams than the free energy change on mixing. The diagram also
provides a convenient graphical means to determine chemical potentials/partial molar free energies of the
components as a function of composition. To see how this is done, we slart by writing the free energy of
the solution:
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o What is the differential of the molar free energy?
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These two equations tell us how to determine the chemical potentials from free energy
diagrams. Returning to our diagram:
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Application of solution free energy analysis: Melting point depression

¢ You probably know that roads and sidewalks are salted in winter to help prevent ice buildup and
subsequent traffic accidents. Thermodynamics provides the explanation for this phenomenon.

(a) No Solute (b) Solute Reduces LLyater (c) Lower T reduces jce
T=T¢ T=T¢ T=T,<Ts

v 50 . &_/

Mice Mwater P Lttt ° ° . Hiee L ﬂ\.zva'ter
Wwater = Hice Uwater < Mice Hwater = Hice

The freezing temperature is lowered by adding solute. (a) The freezing temperature of pure
solvent is Tr. (b) Adding solute reduces the tendency of the water to escape from the liquid
mixture to ice. At Ty, this melts the ice. (¢c) Lowering the temperature to T < T lowers the
tendency of water to escape from the ice, to reach a new freezing point.

Figure by MIT OCW.

¢ Qualitatively:

D>
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Free energy diagrams of multi-phase solutions(5)

» We have already dealt at length with the criteria for equilibrium at constant temperature and pressure in
closed systems: the Gibbs free energy must reach a minimum, and for multi-phase materials, this implies
that the chemical potential of each component must be the same in every phase present. The free
energy diagrams we introduced last time can conveniently be used to analyze multiphase equilibria that
satisfy these conditions graphically,

The common tangent construction and the lever rule
« Suppose we have a binary ideal solution of A and B. We showed last time the shape off the free energy

curve for such a solution. The molar free energy for the solution can be diagrammed for different states
of the solution- for exampie the liquid state and the solid stale- as a function of compaosition:

Xa

o We can answer numerous questions about the thermodynamics of this system from such a
diagram:

»  ‘Which phase is thermodynamically stable at each value of X} for this temperature?

= What is the molar free energy change to melt pure A? to melt pure B?

= What is the free energy change on forming a liquid solution from 0.5 moles of pure 8 and
0.5 moles of pure A7

o Suppose we lowered the temperature from the above situation. How would the two free energy
curves change? Which curve will move mare, considering that:

=H-1§

<
d
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o The answer is seen in the following two diagrams:

Tme > T=T1> Tha

B

o What is happening in the second figure? We have reduced the temperature to the point where
the stable state of pure B is a solid. Remember that the chemical potential is given by the end-
points of the tangent to the free energy curve at a given composition. But we find that at T, a line
can be drawn tangent to both free energy curves- a line that is tangent to the liquid curve at
composition X°, and the solid curve at X°.
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