3.012 Fundamentals of Materials Science Fall 2005
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Equations
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Last time

¢ \We discussed the heat stored and released at first-order phase transitions. This applies to many
transformations in materials. ...even complex materials like proteins:

Solid (folded) —liquid (unfolded) phase transition in lysozyme
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Thermal Expansion/contraction and mechanical expansion/compression

Two classes of solid materials with different thermal behavior
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Thermal expansion

e Materials tend to expand in volume as temperature is increased- generally, increasing temperature
causes a loosening of intramolecular bonds. Why does volume expansion accompany a temperature

increase? O
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¢ To quantify such changes, the thermal expansion coefficient (&) is defined as:

VoumecTRic.  FHERMAL 1 (3_\7

EXPANSION Coesave=NT v

It is the fractional change in volume with temperature at constant pressure. (Note that in some
texts, the symbol 3 is used instead of o, for the thermal volumetric expansion coefficient- but it has
the same definition). « is proportional to the slope of a plot of volume vs. temperature for a

O
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Thermal expansion in noncrystalline (amorphous) materials: The glass transition®

o What will happen if we have a disordered (amorphous or glassy) material that becomes liquid? In contrast
to the melting of crystalline solids, there is no volume discontinuity on heating an amorphous solid. There is
however, a break in the slope of the volume vs. temperature:
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The two general cooling paths by which an assembly of atoms can condense into the solid state. Route 1
is the path to the crystalline state; Route 2 is the rapid-quench path to the amorphous solid state.
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Volume-versus-temperature cooling curves for an organic material in the neighborhood

of the glass transition. /(7) is shown for two greatly different cooling rates, as is the coefficient
of thermal expansion o(7) is shown for the fast-cooling curve (0.02 hr). The break in ¥(7), and
the corresponding step in o(7), signal the occurrence of the liquid—glass transition.

Figure by MIT OCW.
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Kinetic effects in the glass transition

e Importantly, the characteristics of first-order thermodynamic phase transitions like melting hold for

systems in equilibrium- and thus, questions of the rate of changes do not come into discussion. However,
the glass transition is famous for exhibiting significant kinetic effects:
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The possibility of ultraslow cooling giving rise to a glass with lower entropy than the crystalline form of a
material is known as the Kauzmann paradox, after the researcher who'’s work raised many questions
about kinetic effects in the glass transition. One solution to the Kauzmann paradox would be a true

underlying thermodynamic glass transition temperature Tg,,, which occurs to prevent the entropy of
glasses from falling below that of crystals.

Compressibility :F KESSU{ E E??'E'CU

¢ Increasing temperature usually leads to expansion of materials, but increasing pressure tends to

compress materials. The isothermal compressibility (), is used to quantify the response of materials to
compressive pressures:

ISOTYERMAL W= - \ /v
COMPRESSIBILITY = \SP/r

The compressibility is thus the fractional decrease in volume that occurs with pressure at constant
temperature. « can be extracted from measurements of the volume as a function of pressure:”
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Calculations using thermal expansion and compressibility: Example of calculating the pressure
of a confined sample
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Heat capacity and thermal expansion

¢ \Why should dg/dT at constant pressure differ from dg/dT at constant volume? When materials are
heated at constant pressure, thermal expansion changes the response of the material to added heat.
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Temperature variation of Cp and Cv of 5 mol of NaCl. Temperature variation of Cp and Cv of copper.
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+ C, contains the effect of thermal expansion:
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e Vg is the specific volume (cm3/g) of the material. Thus, from 3 measurable quantities- C,, o, and «, we
can indirectly arrive at the constant volume heat capacity. The difference C, — C, is zero at zero K, but
increases as T goes up. Knowledge of C, as a function of temperature is useful for the calculation of
internal energy changes in a system. However, thermal expansion makes the practical measurement of
Cv extremely challenging- enormous pressures are required to prevent a material from expanding over
even small temperature increases. Thus, in practice, one usually determines C, and uses the connection
between C, and C, to calculate C, indirectly.
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A Graphical Summary of Thermal Behavior

e Let's summarize everything we've learned so far about the variation of thermodynamic properties with
temperature:
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¢ \We will see later in the term that the ‘upward trend’ of entropies with increasing temperature is an easily-
proven thermodynamic requirement for stability in a system.
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Thermodynamic driving forces: Writing a fundamental equation

What goes into internal energy?

» When we introduced the concept of work, we stated that every form of work can be thought of as a
generalized thermodynamic force acling to create some generalized ‘displacement’ in the system. In a
similar way, we said that temperature can be thought of as a thermodynamic force that causes a ‘thermal
displacement’ which is the change in entropy of the system:

+ The internal energy, which sums the contributions from these two terms, can be wrillen as a perfect
differential depending on S and V:

The ‘natural’ variables of state functions

o Why do we write U = U{S,V)? Why not U = U(T,V)? The answer will unfortunately not be clear until we
introduce the second law. The second law dictates that certain thermodynamic functions will reach
extrema (maximima or minima) when the system is at equilibrium- e.g. the entropy will be maximized at
equilibrium. When U and S are written as function of S,V and U,V respectively, they are said to be written
in terms of their natural variables. State functions of natural variables have extremum principles at
equilibrium (they will be maximized or minimized at equilibrium). In other words, the reason we write U as
a function of S and Vis that it is the mos! useful form to write internal energy equations for most
problems- we can use this equation for internal energy 10 calculate equilibrium properties.

Generalized expression for the internal energy: internal energy of open systems

e The first law expression above only applies to very simple thermodynamic systems- which have can
undergo only hydrostatic work and have no transport or chemical transformation of components.
Extending our first law expression is straightforward for any thermodynamic case where other forms of
work are important. It is useful to think of the differential as a sum of different forms of internal energy:
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e Let'sfirst look at the case of describing an open system:

¢ To understand what goes into U, we can write an expression for the differential dU:

¢ \We have already mentioned that we are generally most interested in changes in U for making
thermodynamic calculations- thus we will find the above differential equation very useful. In fact, this is
often referred to as the fundamental equation for a simple isolated system.
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