BONDING (4 problems, 50 points total)

Question 1. Local structure: in 1973, Yarnell and co-workers determined the structure of

argon at 85 K. The pair correlation function g(r) they found for this monoatomic substance is
shown below:

a. What is the definition of the pair correlation function? Why does it tend to 1.0 at large r?

Consider the material in its stable phase at 85 K, and imagine a sphere with one of the atoms at
the center of a sphere. A volume of the material can be defined between a sphere with radius r
and a concentric sphere with radius r+dr. The pair correlation is defined

1 N(r,r+dr
gr)= - Mr2 )
p V(r,r+dr)

where p is the density of the material, N(r, r+dr) is the number of atoms in the volume between r
and r+dr, and V(r,r+dr) is the volume.

g(r) 1s a useful quanitity because near the origin, the number of atoms in a shell of the sphere
fluctuates largely based on the arrangement of the atoms. g(r) tends to 1.0 at large distances
because the number of atoms per volume (N/V) becomes equal to the density far away from the
origin. At far distances, the number of neighbors is so great that their individual contributions to
N/V do not appear as unique peaks in g(r).



b. What is the state of argon at 85 K? Isit asolid, aliquid, or agas, and why?

The peaks indicate some nonrandom arrangement of the atomsiis present, which means the
material isnot agas. If the peaks were discrete, the distance to the neighbors would be exact,
and the material would be asolid. Since the function is continuous and the peaks have nonzero
width, the material must be aliquid at 85 K.

c. What is your estimate for the diameter of an argon atom?

The distance from the r = 0 to the beginning of the first peak in the g(r) plot isthe average
distance from the center of one atom to the center of the nearest neighbor atom.

2R~32A
diameter =2R~3.2 A

This diameter is somewhat larger than expected. Argon isanoble gas with electronic
configuration [Na] 3s?3p°. If the material isaliquid, however, the distance from the orgin of g(r)
to the first peak may not be the distance from the center of one hard sphere touching an adjacent
hard sphere.

d. What do the peaks on the g(r) shown above represent?

The peaks represent large fluctuations from the average density of the material. Thelarge
fluctuations at short distances from the origin occur because the closest neighbors reside at
regular intervals from the atom at the origin. Areas of empty space result in troughsin g(r), and
areas where a nearest neighbor residesisapeak in N/V. The peaks show the first through the
fourth nearest neighbors from the origin.

e. Why does the pair-correlation function flatten beyond 15-20 A?

g(r) flattens because distinct neighbors are not present at long range in the liquid. The number of
neighbors per volume in the shell at (r,r+dr) is equal to the density.



f. How can you calculate the number of first-neighbors around an argon atom at 85 K?

R
N = pJ.g(r)47z7’2dr
0

R =5 A, which is the end of the first solvation shell.

g. In which ways would the g(r) (reproduced below) change if the temperature were to increase
by a small amount (small enough that the system doesn’t undergo a phase transition)?

The peaks would shorten and broaden.

—

h. How would the pair-correlation function for argon look like for the two other states not

considered in point b. ? (label each of the two pair-correlation functions either as solid, liquid, or
gas)
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Question 2. Nematic liquid crystals

a. What characterizes anematic liquid crystal? How isit different from a cholesteric liquid
crystal, or from a smectic one? Discuss these differences in terms of orientation and tranglation
order parameters, both long-range and short-range.

The trandation () and orientation (S) order parameters are given by

fefz)

Nematic phases show strong translational order in short range. They show strong orientational
order in long range due to a unique axis along which the mesogen orient themselves. The
nematic phases have some, but weaker orientational order at short range. Cholesteric phases are
similar to nematic phases, but in cholesteric phases, the mesogen orientation twists along the
unique axis. Cholesteric show orientational order at short range but little orientational order at
long range. Cholestric phases show little trandational order. Smectic phases have long range
tranglational and orientational order.

b. The orientation order parameter Sfor a neumatic liquid crystal is (given above), where 0 isthe
angle between a mesogen and the average preferred orientation n, and the angular brackets
represent an average over all the mesogensin the sample. Show what the order parameter S will
beif al the mesogens are oriented perfectly in the direction f, and what will it beif they are
randomly oriented (derive explicitly your result).

mesogens orient perfectlyin A > 0=0

cos’f =1
.S=1
mesogens randomly oriented > 6=0...90°
coso=+1...0
cos”0=+1...0
average of cos? 6 = <cos” 0> =0.5
.S=0



¢. Suppose that a material goes through 4 phases as temperature is increased: first it is a solid,
then a smectic liquid crystal, then a nematic liquid crystal, and finally an isotropic liquid. How
will the orientation order parameter change with temperature (the phase-transition temperatures
are labeled as T1, T2, and T3)?
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Question 3. X-ray diffraction
a. Suppose we have a real space Bravais lattice with principal crystallographic vectors a, ,a,,

and a,. What condition does the wavector k,ofa plane wave Aexp(il; . F) must satisty so that
the planewave has the same value at every point (/,m,n) = la, + ma, + na, of the Bravais lattice?
(As always, demonstrate your statement)
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b. Explain how the Laue conditions arise for constructive interference of a plane wave incident
on amonoatomic crystal that has one atom at each point of the Bravais
lattice(l,m,n) =18, + ma, + na,



¢. The Ewald construction can be used to determine if Laue diffraction will be present of not in a
given sample. Describe, first in words, and only at the end with a figure, the Ewald construction,
its relation to the incoming and outgoing versors for the diffracted x-ray beams, and the
reciprocal lattice of the crystal you are investigating.

The incoming xrays to a sample may be represented by a vector of length 2n/A and direction
given by a versor (vector of unit length) S,. Outgoing xrays from a sample may be represented
by a vector of length 2n/A and direction given by a versor S. Laue conditions state that when the
difference between incoming and outgoing vectors is equal to an integer number of wavelengths,
diffraction occurs. d’ represents S-S, vectors giving constructive interference. d* vectors must
represent orientations in the crystal allowing some integer combination of wavelengths.

To figure out what orientations give rise to integer number of wavelengths, consider an array of
points in three dimensions. Each point has an index (h k 1) that represents how many integer
number of 2n/A lengths occur in the three orthogonal directions. The array of points is the
reciprocal space. Now imagine the vector S in the reciprocal space. If S has a constant length
and is rotated in every direction with one end as a pivot, it creates a sphere of all possible points
a vector of 21/A can make. We are interested in finding the places where S-S, give rise to
diftraction. The places where the sphere intersects the points of reciprocal space are the points
that are integer numbers of 2nt/A. These points are the endpoints of the d” vectors. The points or
indices (h k 1) in reciprocal space represent real space directions in the crystal that have give rise
to diffraction in a sample.




d. Why do we use monochromatic x-rays in a Debye-Scherrer experiment?

To measure diffracted rays from a sample, one must either look at the sample from a range of
views but with a single wavelength or one must look from one direction and monitor a variety of
wavelengthsin order to determine characteristic d spacings. The Debye-Scherrer experiment
uses the first approach. A cameracircles asample of crystalline powder irradiated with x-rays.
The powder contains many orientations of the crystals, and diffracted beams occur in many
directions. Using Bragg'sLaw nA = 2 d sing, many angles ¢ are known, 1 is constant, and thus
d can be solved for.



Question 4. Symmetry constraints of physical properties: at a well-known Institute of
Technology in the Northeast of the United States, Prof. Superman, Prof. Laue, and two UROP
students are busy at work. Prof. Superman has brought a crystal of kryptonite and gone off to
greater glories. Prof. Laue has given it a glance (Prof. Laue emits x-rays in his spare time) and
proclaimed that kryptonite is metallic and has point group made only by a 4-fold rotation axis
and a mirror plane perpendicular to that axis. The UROPs are asked to figure out what the
symmetry properties of the electrical conductivity tensor ¢ are (o relates an applied field to a

current density via j = oF, i.e. j; = oy E), write a convincing explanation for it, and invoke a

clear statement of the Neumann principle in the process. Can you help them out and grant them
a well deserved break?
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