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THERMODYNAMICS 

1.	 Free energy calculations. 

a.	 Engel and Reid, problem 6.2. 

! 

"G = ?

dG =VdP # SdT

The system is at constant temperature, therefore: 

! 

dG =VdP

"G = VdP

10.5bar

0.5bar

# = nRT
dP

P
10.5bar

0.5bar

# = (2.5)(8.3144)(350K)ln
(0.5)

(10.5)
= $22.1kJ

b. Engel and Reid, problem 6.3. 

! 

"A = ?

dA = #PdV # SdT

Again, the system is at constant temperature, thus: 

! 

"A = #PdV
35.0L

12.0L

$ = #nRT
dV

V
35.0L

12.0L

$ = #(2.0)(8.3144)(298K)ln
(12.0)

(35.0)
= 5.30kJ

2.	 Vapor-liquid equilibria. Consider the experimental setup described in the cartoon below: 
We have a closed beaker containing either a quantity of pure liquid A or a solution of liquid A 
mixed with liquid B. The liquids are in equilibrium with the gas phase above them (pure 
gaseous A in the one case and a mixture of gaseous A and B in the other). The systems are 
equilibrated at constant temperature and pressure. Assuming the vapors can be modeled as 
ideal gases, answer the following questions: 
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a.	 What is the equilibrium condition on the chemical potentials of A molecules in the 
case of pure A liquid in equilibrium with its gas? What is the condition on the 
chemical potential of A molecules for A molecules in the solution in equilibrium with 
the A/B gas mixture? 

For any closed system at constant temperature and pressure, the chemical potentials 
of a given species must be the same in each phase. For the pure A liquid in 
equilibrium with its vapor: 

! 

µA

liquid = µA

vapor

For A in solution with B, we have: 

! 

µA

liquid _ solution = µA

vapor _mixture

b. Show that at equilibrium, the difference between the standard state chemical 
potentials of the pure liquid A and pure A gas is: 

! 

µi

o,liquid
(T) "µi

o,gas
(T) = RT ln

P
*

Po

…where P* is the vapor pressure of pure A (the pressure of pure A gas above pure A 
at the given temperature and pressure) and Po is the reference pressure for the ideal 
gas. 

We find this relationship by simply expanding the equilibrium condition above 
for the case of the pure A liquid in equilibrium with its vapor: 

! 

µA

liquid = µA

vapor

µA

o,liquid + RT lnaA
liquid = µA

o,vapor + RT ln
P
*

P
o

" 

# 
$ 

% 

& 
' 

The activity of A in the pure liquid state can be taken as approximately 1, therefore: 
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! 

µi

o,liquid
(T) "µi

o,gas
(T) = RT ln

P
*

Po

c. Show that for the solution, the activity of A molecules is: 

! 

a
A

solution
=
P
i

P
*

…where P* is the vapor pressure of A above pure liquid A, as in part (b), and Pi is the 
partial pressure of A gas in the A/B gas mixture above the solution. 

For the A/B solution, A molecules in the liquid phase are in equilibrium with the gas 
phase as given above: 

! 

µA

solution = µA

gas_mixture

µA

o,liquid + RT lnaA
solution = µA

o,vapor + RT ln
PA

P
o

" 

# 
$ 

% 

& 
' 

Note that the superscript for the standard state chemical potential of A in the liquid 
solution phase says ‘liquid’ rather than ‘solution’- because the standard state chemical 
potential is the free energy of pure liquid A, which is the same reference state for both 
pure A and for a solution of A mixed with B molecules.. This fact allows us to use the 
result from part (b) to s

! 

µi

o,liquid
(T) "µi

o,gas
(T) = RT ln

P
*

Po

implify the expression: 

and: 

! 

µA

o,liquid + RT lnaA
solution = µA

o,vapor + RT ln
PA

P
o

" 

# 
$ 

% 

& 
' 

RT lnaA
solution = µA

o,vapor (µA

o,liquid + RT ln
PA

P
o

" 

# 
$ 

% 

& 
' 

RT lnaA
solution = (RT ln

P
*

P
o

" 

# 
$ 

% 

& 
' + RT ln

PA

P
o

" 

# 
$ 

% 

& 
' 

RT lnaA
solution = RT ln

PAP
o

P
o
P
*

" 

# 
$ 

% 

& 
' 

)aA
solution =

PA

P
*
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3.	 Spontaneous formation of solutions. Prove that if two pure liquids A and B are placed 
together in a container, formation of a solution from the two is always a spontaneous process 
if the pair form an ideal solution. 

To prove the process of forming a solution is spontaneous, we must show that the free 
energy change on forming the solution is < 0: 

! 

"G =Gsolution #Gunmixed _ components =Gsolution # (GpureA +GpureB )

The initial state is pure A and pure B (unmixed), while the final state is the solution. The free energy 
change for this process is then expanded as: 

! 

"G = n
A
G 

A
+ n

B
G 

B[ ] # (nA
µ

A

o + n
B
µ

B

o
)

"G = n
A
µ

A
+ n

B
µ

B[ ] # n
A
µ

A

o
# n

B
µ

B

o

"G = n
A

µ
A

o + RT lna
A( ) + n

B
µ

B

o + RT lna
B( )[ ] # n

A
µ

A

o
# n

B
µ

B

o

"G = n
A

µ
A

o + RT lnX
A( ) + n

B
µ

B

o + RT lnX
B( )[ ] # n

A
µ

A

o
# n

B
µ

B

o

"G = n
A
RT lnX

A
+ n

B
RT lnX

B

Now, because XA and XB are always ≤ 1, the natural log terms are always negative- and thus ΔG is 
less than zero for all values of XA/XB. This is illustrated by the plot below of ΔG for the mixing 
process vs. XB: 
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4.	 Chemical reaction equilibria. 

a.	 Consider the gas phase reaction of NO2 shown below. At T = 700 K, the equilibrium 
constant Kp = 0.379. At a total pressure of 2 atm, the partial pressure of oxygen in the 
reaction is 0.378 atm at equilibrium. Determine the molar standard state free energy 
of reaction and the equilibrium composition of the gas mixture (final partial pressure of 
each component) for these conditions. 

! 

NO
2(g )" NO

(g ) +
1

2
O
2(g )

At equilibrium, we have: 

! 

"G 
rxn

= 0

"G 
rxn

o
+ RT lnK

P
= 0

#"G 
rxn

o
= $(8.3144

J

mole %K
)(700K)ln(0.379) = 5,650

J

mole
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! 

K
P

=

P
NO

P
o

" 

# 
$ 

% 

& 
' 
P
O2

P
o

" 

# 
$ 

% 

& 
' 

1/ 2

P
NO2

P
o

" 

# 
$ 

% 

& 
' 

0.379 = K
P

=

P
NO

1

" 

# 
$ 

% 

& 
' 0.378( )

1/ 2

P
NO2

1

" 

# 
$ 

% 

& 
' 

(
P
NO

P
NO2

" 

# 
$ $ 

% 

& 
' ' = 0.616

P
NO

+ P
NO2

+ 0.378atm = 2atm

Solving the last two equations for the two unknowns, we find PNO2 = 1.003 atm and PNO = 0.619 atm. 

b.	 We wish to mix an initial x moles SO3(g) and 1 mole SO2(g) to obtain a final partial 
pressure of oxygen equal to 0.05 atm in a reactor at 1100 K under a total pressure of 
1.2 atm at equilibrium. Calculate x given: 

! 

SO
2(g ) +

1

2
O
2(g )" SO

3(g )

! 

"G 
rxn

o
= #94,560 + 89.37T

J

mole

(Modified from C.H.P. Lupis, Chemical Thermodynamics of Materials, problem V.6) 

We know that at equilibrium: 

! 

"G 
rxn

o
(T =1100K) = 3747

J

mole
= #RT lnK

P
= #RT ln

P
SO3

P
o

$ 

% 
& 

' 

( 
) 

P
O2

P
o

$ 

% 
& 

' 

( 
) 

1/ 2
P

SO2

P
o

$ 

% 
& 

' 

( 
) 

Taking Po = 1 atm, we have: 

! 

K
P

= 0.664 =
P
SO3

P
O2

( )
1/ 2

P
SO2

( )

0.664 P
O2

( )
1/ 2

=
P
SO3

P
SO2

" 

# 
$ $ 

% 

& 
' ' 
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! 

n
O
2

=
1

2
"

n
SO

2

=1+ "

n
SO

3

= x #"

n
total

=
1

2
" +1+ " + x #" =1+

1

2
" + x

We also know that at any point during the reaction, we have the following numbers of moles of each 
species: 

The partial pressures must sum to give the total pressure in the system, and we are asked to solve 
for the case where the total pressure is 1.2 atm and the oxygen partial pressure is 0.05 atm: 

! 

P
SO2

+ P
SO3

+ P
O2

= P

X
SO2
P + X

SO3
P + 0.05atm =1.2atm

n
SO2

n
total

P +
n
SO3

n
total

P + 0.05atm =1.2atm

n
SO2

+ n
SO3

n
total

" 

# 
$ 

% 

& 
' 1.2atm + 0.05atm =1.2atm

1+ x

1+
1

2
( + x

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
1.2atm + 0.05atm =1.2atm

! 

1+ x

1+
1

2
" + x

= 0.9583Equation (i): 

We can rewrite the equilibrium condition from above to get a second equation in terms of x and the 
extent of reaction ξ: 

Equation (ii):


Using equations (i) and (ii) to solve for ξ and x (the quantity we are after), we find:
! 

0.664 P
O2

( )
1/ 2

=
P
SO3

P
SO2

" 

# 
$ $ 

% 

& 
' ' 

0.148 =
P
SO3

P
SO2

" 

# 
$ $ 

% 

& 
' ' =

X
SO3
P

X
SO2
P

" 

# 
$ $ 

% 

& 
' ' =

n
SO3

n
SO2

" 

# 
$ $ 

% 

& 
' ' =

x ()

1+ )

! 

0.148 =
x "#

1+ #

! 

x = 0.275

" = 0.111
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5. Gas-solid reactions. 

a. Engel and Reid problem 6.13. 

At equilibrium, the free energy change of reaction is zero: 

! 

"G 
rxn

= 0

"G 
rxn

o
+ RT lnK

P
= 0

"G 
rxn

o
+ RT ln

P
NH3

P
o

# 

$ 
% 

& 

' 
( (aFe

s
)
2

(a
Fe2N

s
)

P
H2

P
o

# 

$ 
% 

& 

' 
( 

3 / 2
= 0

"G 
rxn

o
+ RT ln

P
NH3

P
o

# 

$ 
% 

& 

' 
( (1)

2

(1)
P

H2

P
o

# 

$ 
% 

& 

' 
( 

3 / 2
= 0

Note that in the last line we have applied the standard approximation, taking the activities of 
the solids as ~1.0. We are given values for the ratio PNH3/PH2 at each temperature. These can be 
used to calculate PNH3 and PH2 using the fact that the partial pressures must sum to give the total 
pressure of the system: 

(i) 

! 

P
NH

3

+ P
H
2

= P =1atm

Knowing the partial pressures, KP at each temperature is obtained directly from: 

(ii) 

! 

K
P

=

P
NH

3

P
o

" 

# 
$ 

% 

& 
' 

P
H
2

P
o

" 

# 
$ 

% 

& 
' 

3 / 2
=

P
NH

3

P
H
2

( )
3 / 2

Using Equation (i) and (ii), we get KP = 3.85 and 1.56 at T = 700K and 800K, respectively. 

(b) Calculate 

! 

"H 
rxn

o and 

! 

"S 
rxn

o : 

We know that the equilibrium constant is related to the free energy change per mole of 
reaction: 
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! 

"G 
rxn

o
= #RT lnK

P

#"G 
rxn

o

RT
= lnK

P

Now, the enthalpy change is related to the free energy change: 

! 

"G 
rxn

o
= "H 

rxn

o
#T"S 

rxn

o

"H 
rxn

o
= "G 

rxn

o
+ T"S 

rxn

o

We have shown before in class that the entropy change is a derivative of the free energy with 
respect to temperature, which we can prove by comparing the differential form of Gibbs free energy 
to the definition of dG(T,P): 

! 

dG =VdP " SdT

dG(T,P) #
$G

$P

% 

& 
' 

( 

) 
* 
T

dP +
$G

$T

% 

& 
' 

( 

) 
* 
P

dT

+
$G

$T

% 

& 
' 

( 

) 
* 
P

= "S

Using this relationship, we can write: 

! 

"H 
rxn

o
= "G 

rxn

o
+ T"S 

rxn

o

"H 
rxn

o
= "G 

rxn

o
+ T #

$"G 
rxn

o

$T

% 

& 
' 

( 

) 
* 

"H 
rxn

o
= "G 

rxn

o #T
$"G 

rxn

o

$T

% 

& 
' 

( 

) 
* 

(Note that an alternative expression can be derived, as shown in section 6.10 of Engel and Reid). 
Now, with the given data, the best we can do is estimate the partial derivative by calculating the 
change in free energy at the two given temperatures: 
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! 

"G 
rxn

o = #RT lnK
P

"G 
rxn

o
(T = 700K) = #7.85

kJ

mole

"G 
rxn

o
(T = 800K) = #2.96

kJ

mole

$"G 
rxn

o

$T

% 

& 
' 

( 

) 
* +

"G 
rxn

o
(T = 700K) #"G 

rxn

o
(T = 800K)( )

700 # 800K
= 48.9

J

mole ,K

-"H 
rxn

o = #7.85
kJ

mole
# (700K) 48.9

J

mole ,K

% 

& 
' 

( 

) 
* = #42.1

kJ

mole

"S 
rxn

o
(T = 700K) = #

"G 
rxn

o #"H 
rxn

o

T

% 

& 
' 

( 

) 
* = #

#7,850 + 42,100

700

% 

& 
' 

( 

) 
* = #48.9

J

mole ,K

"S 
rxn

o
(T = 800K) = #48.9

J

mole ,K

(c) Last, we are to estimate the standard state free energy change per mole of reaction at T = 
298 K. We need an expression to relate the change in free energy with temperature to 
changes in the equilibrium constant: 

! 

"G 
rxn

o = #RT lnK
P

#"G 
rxn

o

RT
= lnK

P

$
#"G 

rxn

o

RT

% 

& 
' 

( 

) 
* 

$T
=
$ lnK

P

$T

"H 
rxn

o( )
RT

2
=
$ lnK

P

$T

Since the problem states that we can assume the enthalpy change of reaction is independent of 
temperature, we can re-arrange this expression and integrate: 
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! 

"H 
rxn

o( )dT

RT
2

= d lnK
P

#
"H 

rxn

o( )dT

RT
2

= # d lnK
P

"H 
rxn

o

R
#

dT

T
2

= " lnK
P

"H 
rxn

o

R

$1

T

% 

& 
' 

( 

) 
* 700
298 = " lnK

P
= lnK

P
(T = 298K) $ lnK

P
(T = 700K)

$42,100

8.3144
$0.00193( ) = lnK

P
(T = 298K) $1.35

+ lnK
P
(T = 298K) =11.11

"G 
rxn

o
(T = 298K) = $RT lnK

P
(T = 298K) = $27.5

kJ

mole

b. Engel and Reid problem 6.29. 

(a) What is KP for the reaction? We can solve this using only the partial 
pressure information and the stoichiometry of the reaction. The total 

(i) 

! 

P
H2O

+ P
CO2

= 0.115bar
pressure is given, thus 

From the given reaction equation, we know that KP is given by: 

! 

K
P

=
P
H
2
O

P
o

" 

# 
$ 

% 

& 
' 
P
CO

2

P
o

" 

# 
$ 

% 

& 
' = P

H
2
O( )PCO

2

…and we also know from the reaction equation that for every mole of H2O 
produced, we must produce one mole of CO2. This guarantees that: 

(ii) 

! 

P
H
2
O

= P
CO

2

Combining (i) and (ii): 

! 

P
H2O

= P
CO2

=
0.115

2
bar = 0.0575bar

K
P

= 3.31"10
#3

(b) With some water vapor initially present, the partial pressures after 
some extent of reaction ξ are: 
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! 

K
P

= 3.31"10#3 = P
H2O

( )PCO2 = (0.225 + $)$

! 

P
H2O

= 0.225 + "

P
CO2

= "

…and the equilibrium constant is thus: 

Solving this quadratic equation for ξ gives us: 

! 

" = P
CO2

= 0.0139bar
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Problem Set 4 - Bonding 

� � −� −	 r1 , r2 ) = +β(−r1 , r2 ) is symmetric if β(−1.	 Recall: a wavefunction β(− � � − r2 , r1 ). It is an-

� � −
tisymmetric if β(−� − r2 , r1 ) (note that it is possible for a wavefunction to be r1 , r2 ) = −β(−

neither symmetric nor antisymmetric). 
r1 −− r2 −− r1 + − r2 + −Here due to the facts that |− r2 | = |− r1 | and |− r2 | = |− r1 |, all the 

wavefunctions are symmetric. 

2. a. 1) Hamiltonian for H2=2 protons + 2 electrons (Born-Oppenheimer approxima­
tion): 

Ĥ = − h
2 
�2 − h2 

�2 (electron kinetic terms) 
2m 1 2m 2 
2 2e e

� (Coulomb interaction between the first electron and the nuclei) � − �	 −− 
4α�0|− � − 

4α�0 |−r1 −rA| r1 −rB| 
2 2e e

� (Coulomb interaction between the second electron and the nuclei) � − �	 −− 
4α�0|− � − 

4α�0 |−r2 −rA| r2 −rB| 
2e

� (Coulomb interaction between the electrons - repulsive) (1)� −+ 
4α�0 |−r1 −r2 | 

b. When the internuclar distance goes to 0 Å, the LCAO trial set (linear combination of 
hydrogen 1s orbitals) is unable to reproduce the exact ground-state. In this limit, H2 can 
be assimilated to a helium atom He. Consequently, a better approximation of the ground-

� � 3 
� 1 2 

r 

state is obtained by replacing the hydrogen 1s orbital, �1s(−r ) = �1 
α a0 

e
− 

a0 by the 
3 

�
� 

2 
� 

2
2r 

helium 1s orbital, �He(−r ) = �1 
α a0 

e
− 

a0 in the expressions of π� and π�1s 

ˆ3. a. The wavefunctions |πi↓ are the eigenfunctions of the same Hermitian operator A. 
Thus (Lecture 5), they are orthogonal: 

(i) ↑πi|πj ↓ = 0 if i →= j

Moreover:

(ii) |�↓ = c1|π1↓ + c2|π2 ↓ + c3|π3↓ + ...

Besides, since |�↓ is orthogonal to |π2↓:

(iii) ↑π2|�↓ = 0

Combining (ii) and (iii), we obtain: ↑π2|�↓ = c1↑π2 |π1↓ + c2↑π2|π2↓ + c3↑π2 |π3↓ + ... = 0.


Using the orthgonality relations (i) results in:	 c2↑π2|π2↓ = 0. 
� � � � �

2(
− r )d−	 r )As a consequence, since ↑π2|π2↓ = space π

� r )π2(− r is not zero (otherwise, π2(−

would be zero everywhere), we conclude that c2 = 0. Nothing can be said about c1. 

b. The wavefunctions |Y m↓ are, by definition, the normalized eigenfunctions of the same l 
L2 with eigenvalues ¯Hermitian operator ˆ h2l(l + 1). Consequently: 

1 



� 
L2|Y m↓ = ¯(i) ˆ h2l(l + 1)|Y m↓l l 

(ii) ↑Y m|Y m ↓ = 0 if the labels are different l l� 

(iii) ↑Y m|Y m↓ = 1 (same labels) l l 
|�↓ is a linear combination of |Y1

0↓ and |Y2
0↓: 

(iv) |�↓ = c1|Y1
0↓ + c2|Y2

0↓ (and, correspondingly, ↑�| = c
1 | + c

2 |)
0Y�↑

2
0Y�↑

1

L2|�↓. Substituting (iv) in ↑�| ̂We have to calculate and minimize ↑�| ̂ L2|�↓ and using 
(i), (ii), (iii), we obtain: ↑�| ̂L 2 2 2 22|�↓ = c 1|

22h̄ 2|
26h̄1 ̄h 1(1 + 1) + c
�c2 2 ̄h 2(2 + 1) = | + |c�c1 c . 

Similarly ↑�|�↓ = |c1|2 + |c2|2 . 

LConsequently, minimizing ↑�| ̂ 2|�↓ with respect to c1 and c2 under the constraint 
h2 + |c2|26¯↑�|�↓ = 1 amounts to minimizing |c1|22¯ h2 with respect to c1 and c2 under 

the constraint |c1 |
2 + |c2|2 = 1. After inspection, it can be concluded that the minimum is 

h2reached when |c1| = ±1 and |c2| = 0. The corresponding minimal value is 2¯ . 

4. The stability of methane, ammonia and water is related to two principal intermolec­
ular interactions: 

(1) dipole-dipole interactions between the polar molecules1 ; 
(2) hydrogen bonds between the hydrogen ligand of one molecule and the electron lone 

pair of another molecule2 . 
The dipole moments of CH4, NH3 and H2O (all characterized by tetrahedral sp3 hy­

bridizations) are mainly related to the presence of electron lone pairs: the magnitude of 
the moment increases with the number of electron pairs (Lecture 10). The ordering of the 
dipole moments is thus µ(CH4) < µ(NH3) < µ( H2O). 

From the preceding, it can be concluded that the boiling points of CH4, NH3 and H2O 
are ordered as follows: 

Tbp(CH4) < Tbp(NH3) < Tbp( H2O). 

number of lone pairs 
dipole moment µ (Debye) 
boiling point Tbp (Celsius) 
dipole-dipole interactions 

hydrogen bonds 

CH4 

0 
0 

−162 
no 
no 

NH3 

1 
1.5 
−33 
yes 
no 

H2O 
2 

1.8 
100 
yes 
yes 

1Non-polar molecules can also exhibit temporary dipole moments resulting from the fluctuations of their 
electron charge densities. The resulting temporary intermolecular interaction are called “London dispersion 
forces”. 

2Hydrogen bond are generally stronger than dipole-dipole interactions. 
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5. The molecular HOMO’s of N2 and O2 are the following (Lecture 11 and Engel, Reid 
24.5): 

(1) the orbitals αg 2pz ×(spin �) and αg 2pz ×(spin �) for N2. 
(2) the orbitals ��g 2px×(spin �) and ��g 2py ×(spin �) for O2 (we could also have chosen 

the orbitals ��g 2px×(spin �) and ��g 2py ×(spin �), the only requirement is that the spins have 
the same orientations - Hund’s rule) 

Refer to Lecture 11 or Engel, Reid 24.5, for the plots of the radial parts and their sym­
metries. 

6. The energy of the orbital is indicated in the top-left corner: 

Image removed due to copyright reasons. 

The HOMO-LUMO gaps are listed below: 

E(HOMO) 
benzene � − |�| 

naphthalene � − 0.618|�| 
anthracene � − 0.414|�| 

E(LUMO) 

� + 0.618|�| 
� + 0.414|�| 

Egap = E(LUMO) − E(HOMO)

2|�|


1.236|�|

0.828|�|


The HOMO-LUMO gap diminishes as the molecule becomes longer.


The energy levels for ethene are obtained by solving the following determinant equation
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(Lecture 12 and Engel, Reid 25.7): det 
� −E 
� 

� 
� −E 

= 0. As a result, (�−E)2 −�2=0, 

which implies E = � ± |�|. 
Thus, we obtain: E(HOMO) = � − |�| (bonding orbital), E(LUMO) = � + |�| (anti­

bonding orbital) and Egap = E(LUMO) −E(HOMO) = 2|�|. 
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