Problem Set 3 - Bonding

1. i) energy of a photon E(photon) = hv(photon)
ii) frequency-wavelength relation: ¢ = A(photon)v(photon)
Thus, A(photon) = he/E(photon) = 1240 nm.

2. Cf. Lecture 1bis (“Principle of Linear Superposition”, “Wave-particle Duality”,
Electron Diffraction/Double-Slit Experiment)
Engel, Reid: Section 12.6

A .
3. wavefunction of the free electron in 3D: U(7, ) = Aei F T vt — pgilhenthyythez—wt)
Cf Lecture 1bis (“A travelling Plane Wave”)

You can check that:

)LV ) = - B Z 4+ 2 SR 0) = (k24 K2+ R (P 1)

i) ih2U(7,t) = hw¥ (7, 1)

As a consequence, the wavefunction U(7,t) = Aeikezthyyth2—wt) yerifies the SSE
under the condition that E = 22 (k2 + k2 + k2).

The TDSE is satisfied provided that hw = %(kg + k2 + k2) (Cf recitation 1 problem TT
(ab) for further details).

4. i) kinetic energy of the electron Ey(electron) = p(electron)?/2m(electron)
Thus, p(electron) = \/2m(electron)Ey(electron) = 5.40 x 10725 kg.m.s~ .

ii) de Broglie relation A(electron)p(electron) = h
Consequently, A(electron) = h/p(electron) = 1.22 nm

5. For a time-independent potential, making the ansatz ¥(7,t) = ¢(7)f(t) (separation

of variables) in the TDSE, one obtains:
2 .
— 92 FOVZH(P) + V(P F(O)9(T) = ifp(7) 51 (1)
Dividing by %(7)f(t):
n? _;5 1 9

S B VR P) + V(PP ) = iy 51 (0).

A t-dependent function cannot equal a 7-dependent function unless these functions are
equal to the same constant F. Thus:

2 .
e {-LEV2(7) + V(P)(P)} = E and ih7ls 5 () = E
The first equation gives the SSE from which 4(7) can be determined. From the sec-

ond equation (ih%f(t) = FEf(t)), the time-depedent part f(¢) can be calculated (f(¢) o



e—iBU/nY

6. Cf. Engel, Reid: Section 15.3 (note that in our case the dimensions of the box are a
in all spatial directions)

7. Keywords: quantum tunnelling, probing the exponential tail
Cf Lecture 4 (“Metal Surfaces”, “Scanning Tunnelling Microscopy”)
Engel, Reid: Section 16.6

8. Linear operator: an operator O (acts on a wavefunction to give another wavefunction)
is linear if O(Oé1f1 + 042f2) = Oth(fl) + CVQO(fQ).
(where f1, fo are two functions and a1, ay are two constants)

9. Cf. Lecture 4 (“Fourth Postulate”)

10. Surface of the earth: S(earth) = f¢ °™ R2(earth) sin(0)dfd¢ = R2(earth) x
Jo=q sin(0)d x [{=°" d¢ = 4w R?(earth) = 5.15 x 1014 m?2

11. Engel, Reid: Section 14.2

12. Since the potential is central (V = V(r) = —e?/(4meor)), one can try to separate
variables in the SSE: ¢(r,0,¢) = R(r)Y (0, ¢).

The commutation between H, L? and L, tells us that 9(r, 0, ¢) = R(r)Yim(0, ¢), where
Yim (6, ¢) is a spherical harmonic.

Substituting in the SSE H4(r,0,¢) = Ev(r,0,4) (recall that H = —L 10,20 4

% - %), we obtain the equation —%%mr R(r) + "’ZIT%;”R(T) — 4;;7}2(7") = ER(r)
(the first term corresponds to the radial kinetic energy, the second to the angular kinetic
energy /centripetal contribution to the energy, and the third to the potential/Coulomb en-
ergy). This equation can be solved by making another ansatz: R(r) = L(r)e®” (where L(r)
and unknown polynomial and @ an unknown constant).

Cf. Questions/Answers (posted on the class web site — Study Materials)

Engel, Reid: Section 20.3

13. 4 quantum numbers:

n=principal quantum number, related to the total energy of an electron in the presence
of an atomic nucleus.

I=angular momentum quantum number, related to the square of the angular momentum

m=magnetic quantum number, related to the projection of the angular momentum on
a given axis (often the z-axis)



s=spin quantum number, related to the spin of the electron (Cf. Stern-Gerlach experi-

ment)
Cf. Lecture 5, Cf. Lecture 7 (“Spin Eigenvalues/Eigenvalues”)

14. As seen in Problem Set 2, the expectation for the potential energy for an electron

in the hydrogen atom is twice the total energy: (V(r)) =2 x (—#) = —1/2 Ryd

15. The He atom because of electron-electron screening.
Cf. Lecture 8
Engel, Reid: Section 21.1

16. Cf. Lecture 9
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THERMODYNAMICS

1. Why is it hard to make measurements at constant volume? We have discussed in class
that experimentally, C, is difficult to measure due to thermal expansion. Let’s quantify this
difficulty: Suppose you have 1 mole of iron that has a volume of 7.31 cm® at 293 K.
Determine the pressure that would have to be applied after this material is heated to 298 K

(only 5 degrees warmer!) to compress it to the volume it had at 293K- thus maintaining
constant volume.

Data for Fe: 0 =6.3x10° K
k =1.10x10% atm™  at 298K

We start with the formula for the thermal expansion coefficient, in order to calculate the amount of
expansion that occurs when the temperature is raised to 298K:

1(av)
oa=—|—
v\er),

odT = d—V
\%
Ty Vy
f odT = d_V
T, v, 14

Thus the volume after heating is:
VH - VLeaAT

Next, we need to determine the pressure required to compress the material back to V/:

1(av)
K=——|—
V\oP),

dP=—LdV
KV
\7 aAT
A= L&V _1 Ve 1, Vien AT _ oo iim
ky, V. x V, « v, K
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...thus the difficulty in making constant volume measurements. Even this small re-compression
requires quite a significant applied pressure.

2. Thermal properties of gases. Calculate the thermal expansion coefficient and isothermal
compressibility of an ideal gas.

1((9v)
a=s—|—
v\aor),

V=nRT

K__l(_nRT) _( P )(nRT)_l
vi P’ nRT\ P> ) P
3. Cooking with a sealed pot. Engel and Reid problem P3.5, p. 59.

We make use of the expression derived in class relating temperature/volume changes to pressure
changes in a material:

ap<%ar- L av
K Vk

Taking the a and k as approximately constant during this process, we can integrate the first term
directly:

1459 %10 bar™

333 —4 -1
fng—( 2.04x104K
K

)(3331{ —~298K) = 156bar

298
To integrate the second term, we need to estimate the volume change allowed during the expansion.

Since the thermal expansion coefficient of the vessel is smaller than that of water, the expansion of
the vessel will be the limiting factor. We can calculate the volume change allowed by the vessel:
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4

1(av)
avessel =
viar),

Irreversibility of a free expansion. Recall in lecture 2 that we discussed irreversible
processes, and gave several examples- one of these example irreversible processes was the
expansion of a gas to fill a vacuum. All irreversible processes only occur in one direction
spontaneously because it is in this direction that the entropy of the universe is increased, in
accord with the second law. Let's show this for the irreversible expansion: consider the
diagram below. An ideal gas is initially contained in one half of a chamber with adiabatic
walls, the volume of the half of the chamber containing the gas is V,. The partition between
the right and left halves is suddenly removed, and the gas expands isothermally and
adiabatically to fill the entire space (Vs = 2V,). Show that this process fulfills the requirements
of the second law for spontaneity by calculating the entropy change in the gas, the
surroundings, and the universe, and show that for the process to run in reverse (spontaneous
collapse of the gas back to one half of the chamber) will violate the second law.

o ¢ e ° ) e ®
® °

e o . —) ® °
® ® o9 ® ® ® o

ds =dS

universe

+dS._ =dS

system surr

- lav
T

system T

Because the temperature is held constant and for an ideal gas U = U(T), the internal energy is

constant:
(nRT)
=0+ LalV =

universe

dSuniverve - nk av
) \%
Vf
SAS =nRIn—=nRIn2 >0

1

Because the entropy change in the universe is positive, the process is spontaneous. For the
process to run in reverse, the entropy change is negative:
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v, 1
AS =nRIn—- =nRIn—=-nRIn2 <0
V. 2

1

universe

5. Let’s revisit the liquid bismuth adiabatic cooling problem we examined on the last problem
set. The physical situation is described again below, and the physical data for the system is
also given. From your calculations on the last problem set, you showed that the alumina
crucible and bismuth equilibrate at a final temperature of 433 K. Demonstrate that this
process (cooling of the bismuth, warming of the alumina crucible) obeys the second law of
thermodynamics, by calculating the total entropy change of the universe for the process.

Twenty kg of liquid bismuth at 600 K is introduced into a 10 kg alumina (Al,O3) crucible (initial
temperature 298K), filling the crucible to the top; the crucible and bismuth are then surrounded
by adiabatic walls (illustrated below) and the system is allowed to equilibrate. At equilibrium,
according to the zeroth law, the temperatures of the bismuth and alumina crucible must be equal.
Use the following thermodynamic data:

épalumin a,solid — 1066 + 00178T; T”clzlumina - 2327K
- mole
Tl 2188 40,0237 —2— I,' =544K
P K - mole
C it 220 +0.006157 —2— AFY =10,900—
P K - mole mole

To show the process is spontaneous, we must calculate the entropy change in the universe:

AS
AS

=AS +AS,, =AS +0

universe system surr system

=ASy +AS, 0,

universe
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We know the entropy change in the surrounding is zero because the only energy transfer occurring
here is heat transfer, and the samples are surrounded by an adiabatic boundary- thus no heat is
moving into the surroundings to change their entropy.

Ty CAROs 433
AS, 0 = f WP T = f (98.08) (106.6 +0.01787) .
o r 208 T
AS,0, =4 14%
44 Ol — o
85, - [ Star-"0e, TS ar - a07
600 544 K
ASuniverse = ASBZ' + ASA1203 = 135%

Since the entropy change of the universe is positive, the process is predicted to be spontaneous.

6. Confirming your intuition using the second law. Using your ability to calculate entropy
and enthalpy changes at phase transitions and the data given below for nickel, consider the
following possible processes and confirm your intuition by a calculation showing whether the
process is spontaneous or not according to the second law. The key to this problem is to
correctly identify what heat is transferring between the system and the surroundings in these
processes, and to carefully calculate the entropy changes for the system. Also critical: pay
attention to the number of significant figures you carry in your calculation.

a. One mole of solid nickel at 1716 K isothermally transforms completely to liquid at this
temperature. The surroundings are a heat bath at 1716 K, and the process occurs at
constant pressure.

b. One mole of solid (superheated) nickel at 1736 K isothermally transforms completely
to liquid at this temperature. The surroundings are a heat bath at 1736 K, and the
process occurs at constant pressure.

C* =16.49+0.01877—I T, =1726K AH, =17.47 M
b K - mole mole
Ch= 38.91#
b K - mole

a. The transformation we are concerned with is shown schematically below on
qualitative plots of the entropy and enthalpy of the system near the temperature of
interest. Our process is isothermal and isobaric. To test for spontaneity, we need, as
in the above problems, to calculate the entropy change in the universe:
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AS =AS +AS

universe system SUurr

The entropy change in the system will be given by the entropy change along the dashed line from A

to B on the entropy plot below. We calculate the length of this line segment as illustrated graphically
in the plot:

AS on =AS, —AS, +AS,
AS, = AH, =10.12i
T K

m

m

1726 61 1726
AS, = [n—LdT= [() G8ID 41— 3891101720 L9206 L

1716 1716 1716 K

1726 s 1726
AS,= [n—LdT= [(1) 1649+ 0.0I87T) /- _ 16 49101720 4 0.0187(1726 ~ 1716) = 0.0958 + 0.187 = 0283

1716 1716 T 1716 K
CAS = 10.182

‘ K

Because the surroundings are at constant temperature, and we assume no work is occurring, the

entropy change in the surroundings derives completely from the heat transfer from the system to the
surroundings:

A S — _qsys — -AH sys
o T (1716K)

AH,, =AH, - AH, + AH, =17,470 - 389.1+ 486.7 = 17.57kJ
1726 . 1726
AH, = [nC,dT = [(1)(38.91)dT = 389.1J

1716 1716
1726

AH, = [nC)dT =16.49(1726 ~1716) +

1716

0.0187

(1726 =1716°) =164.9 + 321.8 = 486.7J

SAS,,, = —10.23i
K

surr

Finally, the total entropy change of the universe is:

AS =AS +AS =10.18—10.23=—0.05%

universe system surr

Since the entropy change is less than zero, this process will not occur.
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q=AH ° { ] S as F AS,,
: AH,, :
: A 4 _—AS,
ﬁ':/ — THAH, /
171l6 K T, T 171!6 K T T

m

b. Now, we follow the exact same scheme to predict the spontaneity of melting a

superheated solid nickel sample: We must show that the entropy change of the
universe in this process is positive:

AS universe ASsystem + ASsurr
1736 s 1736 1 J
AS, o =AS, ~ [n—LdT+ [n—LdT =10.12-.282+0.225=10.06-
1726 T 1726 T K
S — _qsys — _AHsys
T (1736K)  (1736K)
1736 . 1736 .
Gy =AH, — [nCdT + [nCldT =17.37kJ
1726 1726
~AS = 1001~
K
ASuniverse = 0051
K

...which is a spontaneous process.
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