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THERMODYNAMICS

1. A sheet of manganese (2 moles) at room temperature (298 K) is placed in thermal contact
with a heat supply that slowly transfers 100,698 J of heat into the sample at constant
pressure. Use the following thermodynamic data for Mn to answer the questions below:

Mn has four solid phases, a, B, y, and &:

Ce=21.64+159%x10°T— T~ = 993K AH"P =2,010 /

P K - mole mole
ol -3 J By 7By J
C’'=349+28x107"T——— T" 7 =1373K AH, "7 =2,300

b K - mole mole
_ J =5 —. s J
Cl=448 —"—— T " =1409K AH! ~ =1,800

P K - mole mole
C, =473 !

- mole

a. Calculate the final temperature of the sample.
b. Calculate the total enthalpy change for this process.
c. Calculate the total entropy change for this process.

d. What phase (or phases) are present at equilibrium at the end of this process?

a. Calculation of the final temperature is made by using the heat capacity data to determine how
much heat is required to heat up and through the several phase transitions present. The
calculation is readily carried out by simply determining how much heat is needed for heating

to each phase transition:

Starting out at 298 K, we first heat the sample (o phase at room temperature) to the first phase
transition o -> 3, at 993K:

993 993
J

Goosi—oorx = J nC,dT = [(2 moles)(21.6+15.9x 107 T ——)dT = 44,290/

208 298 mole - K
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...Clearly, we have more heat to use, so we continue. The phase transition consumes a small
amount of heat: B
Grosk 903 = NAH 5 =(2)(2,010) = 4,020/

We continue summing up the heat for the next few transitions in a similar manner:

1373 1373
J

ook = J nCLdT = [(2 moles)(34.9 + 0.00287—~—)dT = 29,041

993 993 mole -
gy, =nAH, _ =(2)(2,300) = 4,600]

Our running total for heat transferred to reach the gamma phase ast 1373K is now 81,951 J. This
leaves 18,747 J of heat yet to be consumed. Continuing on to the next transition:

1409 1409 J

Gk ook = | nCdT = [ (2 moles)(44.8——)dT = 32267
m

1373 1373 ole- K
Gys = nAHyﬁé =(2)(1,800) = 3,600J

We have 11,701 J of heat yet to use up. We determine the final temperature by integrating to use up
the ‘left over’ heat in the delta phase:

Ty T,
— J
q .+ = | nC'dT = | (2 moles)(47.3——)dT =11,701J
1409K —T 12[9 p 1:1[9 mole - K
94.6Tf -133,291J =11,701J
Tf =1535K

b. Because this process occurs at constant pressure, we immediately know:

(%) -
»\ar ), \or),

dqrev = dH
qrev = AH
. AH =100,698J

c. We determine the total entropy change in a manner similar to the integrating procedure used
in part (a):

First, the appropriate relation to get us started is:
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(2] (3
»\ar ), “\or),
C
ds =—LdT
T

AS = f —2qT

Note that the last equality and integral hoId only for regions where no phase transition occurs.
Using this expression, we integrate over the temperature change that occurs when the
100,698 J of heat are absorbed by the system:

993 AH l373ncl3 1409nC}’ nAH 1533nC5
AS = f ”dT+ +f ﬁ_’y+f Ve‘s+f P 4T
o o3k ~J 1 “ T 3wk T, "ok AT

We account for the entropy of transition for each phase transformation crossed in the process
with the terms containing the enthalpy and temperatures of transition. Plugging in and carrying out
the integrations:

AS=119.1i
K

d. Our calculation in part (a) tells us that the delta phase is the final equilibrium structure of the
system.

2. Twenty kg of liquid bismuth at 600 K is introduced into a 10 kg alumina (Al,O3) crucible (initial
temperature 298K), filling the crucible to the top; the crucible and bismuth are then
surrounded by adiabatic walls (illustrated below). At equilibrium, according to the zeroth law,
the temperatures of the bismuth and alumina crucible must be equal. Use the following
thermodynamic data to answer the questions below:

éalumina,solid — 1066 + 00178T; T”zlzlumina - 2327K
P K - mole
T 2188 40,0237 —2— I, = 544K
p K - mole
C it 220 +0.006157 —2— AR 210,900
P K - mole mole
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a. What is the final temperature of the system?
b. How much heat is transferred to the alumina?
c. At the final equilibrium, is the bismuth liquid or solid?

d. Consider now the same process, except that the adiabatic walls are removed. The
closed system (can exchange heat...) of the bismuth in the alumina container is
placed in a large room at T = 298 K, which behaves as a heat reservoir- it can
transfer heat out of the system (or into it, depending on the temperatures of the
reservoir and the system). At equilibrium, the bismuth and alumina will reach a final
temperature of 298 K to match the environment of the room. How much heat will
leave the bismuth to reach equilibrium?

a. Because the crucible and liquid bismuth are enclosed by adiabatic walls, they can only
exchange heat with one another. In other words, whatever heat leaves the bismuth must
enter the alumina. This can be stated mathematically:

4 = ~Y a0,
The minus sign tells us that the direction of heat flow in the alumina is opposite that of the bismuth
(e.g., heat flowing out of the bismuth is flowing into the alumina.) This equality immediately tells us
how to determine the final temperature of the system- since it must be the same in the bismuth and
the alumina:
i = ~4aL0,

s4 o Ty o
[, ClaT - nyAH, + [0, CPdT = -

600 544

Ty
—~AlLOs,s
f My0,C 20 dT

298

A few comments: In writing the left-hand expression, we are making the assumption that the Bi will
cool enough to pass through the melting point and solidify. Note that because we are passing from
high to low temperature, we have a minus sign in front of the enthalpy of melting- we must remove
heat from the sample to freeze it. To proceed, we need to calculate the number of moles of alumina
and bismuth we have:
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Bi: (20,000g)( 2’(”)";)1;

) =95.7 moles

mole

101.96¢

Plugging in the given data for alumina and bismuth, we can calculate the final temperature of the
system:

AL O, :(I0,000g)( ) =98.08 moles

l.le2 +1799T, 2,473,602 = —.87297}2 + 3,193,206 - 10,4557,

The expression reduces to a quadratic equation, which we can solve for Ts

~12,254 + +/(12,254)" - 4(1.97)(-5.666,808
- 1(12.254)° - 4(1.97)( ) asax
2(1.93)

b. The heat transferred to the alumina is just one side of the heat equality expression above:

LT} +1799T, - 2,473,602 = -q,,,,,
a0, = 1.488,397J

c. The final temperature falls well below the melting point of Bi, so the sample has solidified.

d. We simply calculate the heat transfer that occurs to move Bi from liquid at 600K to solid Bi at

298K:
544 - o 298 _
Gy = [ nsCldT - nyAH, + [0, CPdT = -1,839k]
600 544

3. Magnetic resonance imaging (MRI) is a common medical technique used for diagnostic
imaging of tissues in patients. MRI is based on measuring the response of the weak
magnetic dipoles in the atoms of tissues under a strong applied magnetic field. Typically, the
magnetic induction in a clinical MRl machine may be ~2 Tesla. Consider the materials used
to fabricate the MRI chamber that will be placed in the magnetic field, such as aluminum.

a. What magnetic field strength is required to achieve a 2T induction in the MRI housing
if the housing is fabricated from aluminum?

b. Will the magnetization induced in the aluminum be significant compared to, say, an
iron permanent magnet that has a maximal net magnetization of 1.39x10° A/m?
Support your answer with a calculation.

c. What is the work performed by the magnetic field in the volume of a section of the
MRI aluminum housing 1 m x 1 m and 5 mm thick?
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a. We use the expression relating field strength H to induction B:

B=2T=uH+uM=u,0+x)H
From the class notes, we have the susceptibility for Al:
x=2.07x107

B=2r=2" _ (471 x107 kg—'zm)(l +2.07x107°)H
s-C C

H=1.59><106L=1.59><106é

m-s m
b. The magnetization is calculated directly:

M= = 3294
m

...this is only 0.02% of the magnetization of the example iron permanent magnet!
c. The work is:

1.59x10°
H

2
w=[VuHdH =Vu,(1 + 0= LS9XI0" _ 7 940 ]
0
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Problem Set 2 - Bonding

1. Recall: an operator O is linear if O(alfl + agfo) = alé(fl) + agé(fg)
(where f1, fo are two functions and oy, ae are two constants)

2

(a) Tt can be verified that O (o f1(z)+aa fo(z)) = W{mfl( z)+asfa(z)} = o1 Ly f1(z)+
aQ%fQ(w) = a1 O(f1(z)) + 22O(f2(x)). Thus, the operator O is linear.

. A d 2 2 (dfi(x)?
(b) For this operator O(a f1(z)+agfo(z)) = (%{alfl (z) + a2f2(x)}) = (T) +
2 A A .
2(11(12#}1—&)#;—?) + o <df;—f)) # a10(f1(x)) + aoO(fa(x)). Thus, O is not linear.

2. Recall: commutator between A and B = [A, B] = AB — BA

(a) [&, palio(@) = [o, —ih L] (@) = 2 (~ihLe(2)) - (—i)h (2(z))
= —ih (2L () — Y(x) — 2 EP()) = ihp(a).

Thus, the commutator reduces to a multiplicative constant: [£,p,] = ih
(z and p, do not commute).

(b) This time, since the operators involve both z and y, we need to consider a wave-
function of the form (z,y).

(&, pyJ(z,y) =[5, —ih 2 1p(z,y) = 2 (—ihZ (@) — (- (29 (z,1))
= —ih (s 359(@9) = 2 5(z,y)) =0

Consequently, the commutator is zero: [z,p,] = 0 (£ and p, commute).

3. (a) The potential felt by an electron in the presence of the nucleus of a helium atom
= 2) can be written as:
Vir) = charge(nucleus) xcharge(electron) _ —(Ze?)/(4meor) = —(2¢%)/(4meor)

Amegr

z

(see figure on next page)

(b) He' is an hydrogen-like ion (hydrogenoid atom with Z = 2). The energy levels are
thus given by E, = (—13.6058 eV)i—j — 544232 oy

n
(cf. lecture 5 “Three Quantum Numbers”)

(c) From far away, the He' ion can be seen as a single positive charge (cf. Gauss
theorem). The potential can be assimilated to that of a hydrogen nucleus.

Vsecond electron(r) ~ —(e?)/(4meor) when r is large.




potential felt by the 27¢ e~

: /

|4

\ potential felt by the 15 e~

4. i) The volume V of a spatial region Q is given by V = [, d7.
ii) A shell of outer radius R and thickness h can be defined as the spatial region
R-h<r<R
Q: 0<f<m
0<op<2rm
iii) integrals in spherical coordinates: [ f(7)d7 = [, [,/ s f(r,0, $)r? sin(0)drdfdep

As a result, the volume V of the skin of a Valencia orange of thickness h = 0.005 m and
outer radius R = 0.05 m is:

r=R 0= prop=2m
v = / / r? sin(6) drdfdg
r=R—h JO=0

_ < /R R_h r2dr> :Z(O/OW sin(e)da) X ( /O ” d¢)
X

R
/ T2dT> X 2 X 21 (1)
R—h

As expected, V = “Z(R)® - L (R — h)® = 1.42 x 10~ * m?.

5. i) classical quantity: V(r) = —e?/(4meor)
ii) correspondence principle: r — r
iii) quantum operator: V(r) = V(r) = —e?/(4meor)

3 r
iv) expectation value (note that ¥ (r) = PYn—21—0,m—0(r) = YW (%) ’ ( — a’—o) e 20



is already normalized):
r=4o00 ¢=27
ven = [ ' /0 ' ROV ()} sin(O)draddg
VoY = an [TV

wen = -2 [ T2 () (e L))
Ve) = g [Tr (2 1) e ar

327 €0a ao

Using mathematica or maple ! | we obtain: (V(r)) = —e?/(16megag) = —1/2 Ryd.

The expectation value for the potential energy is thus twice the total energy:
2

By = (&2 4+ V(1)) = —g-5— L = —1/4 Ryd

8mepag 22

To calculate the expectation value for the kinetic energy, we can use the fact that
A9 A2
( +V( )) = (&) + (V(r)). Hence (£) = —1/4 +1/2 Ryd= 1/4 Ryd.

2m 2m

6. The orthogonality condition between 15(r) and 125(r) can be written as:
(P1sl¥2s) = Sspace P}, (1)1as(r)dT = 0 (note that there is no arrow on r).
In spherical coordinates, this condition can be rewritten as:

471-\[0—1_00 ¢Ts(7“)¢2s( ) Zd'r = O or f—|—oo 7"26 "'0 (2 — —) e 2a0 dr =0
Again, using mathematica or maple 2 , it can be verified that (1,|¢2,) =0

7. From the graphs (next page), it can be seen that:

- d,2» has 2 conical nodal surfaces; d;, dy, have 1 vertical nodal plane and 1 horizontal
nodal plane; dj2_y2, dyy have 2 vertical nodal planes;

- Rp—3,=2(r) has no node.

8. When the angular momentum quantum number is [ = 1, the possible values of the
magnetic quantum number are m = —1,0,+1 (recall: m = —I, -1+ 1,1 — 1,1).

From the graph of R,_3;-1(r) = Rsp(r) (Engel, Reid Figure 20.6 p 444), there is
1 radial node (note that the node at the origin is never taken into account).

More generally, the number of nodes in the radial wavefunction R,; isn —1 — 1.

+oon

1 you like sport, you can also prove that f e T dr = nx (n—1)x...x2x1x (aag)"** (integration

by parts); and use this equality to calculate the expectation value: (V(r)) = —5(4 8+ 6)ag.

32weoa

2By hand, using the previous formula, f+ rle” @ (2- —) e %o = ad(2 x 2 x (2/3)3 3x2x(2/3)Y).



1)

( ) =z,m
d d e) 23
z2_y2 KR
( i 5 )
=2

(b)
dy
x Re(Yi—2
,m=1)

(e)d
2y x Im(Y]
=2
,m=2)

(c)
d
ye & Im(Y;
=2
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o X R
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s —2(7')




