3.012 PS 8 : Bonding

1. Expectation value for the potential energy of the 1s ground state
of the hydrogen atom

The potential energy operator of the hydrogen atom can be written as:

V() =V(r) =—

(1)
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From Table 16.3. (Mortimer), the normalized wavefunction of the ground state
is (Z=1):
1

Y10 = P15 = ﬁeiﬁ (2)
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In atomic units, the preceding expressions can be rewritten as follows:
1
V() =—_ (3)
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zpls = ﬁe (4)

(+2—=1 hartree=1 a.u.=27.21 eV; a=1 bohr=1 a.u.=0.5292 x 1010 m)
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Consequently, in atomic units, the expectation value for the potential energy of
an electron in the 1s ground state is:
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Moreover, from Appendix C.2. (Mortimer):
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As a result:
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(15| — ;|¢13) = —1 hartree = —27.21 eV (10)




[the expectation value of the potential energy (¢15] — 1[¢1s) = —1 hartree

is twice the expectation value of the total energy (¢1s|7:[|¢1s) = —1 hartree;

this result is known as the “virial theorem”]

2. 1s and 2s states of the hydrogen atom

a. To show that the 1s and 2s wavefunctions are orthogonal, we have to show

that:
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Let us calculate f::ooo 15(T)1hag (r)ridr:
/lzoo VY15 (r)as(r)ridr = /;:00 %e# X j\;%e*%ﬁdr (13)
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(from Table 16.3)
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/Tzo Vs (r)os(r)ridr = A(2 (3/22)3 - (3%)4) (from Appendiz C.2.)
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(note: one can also show that the two integrals are equal by carrying out an

integration by parts: [T e Fdr =0~ [T_° g(—%)e’%dr)



Graphically, the preceding result means that the curve of the function r2¢; s (r)as(r)
is such that the area denoted “+” is equal and opposite to the area denoted “-”.
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This requirement has two main consequences:

- there exists a node in the graph of 12, (r), around which the function changes
its sign;

- 1)2s(r) is less localized around the origin 7 = 0 than ;4(r) (otherwise the
negative part of the integral of 7241 4(r)ts(r) would not composate its positive
part).

 [bohr]



b. The expectation value for the distance from the nucleus of the 1s state can
be calculated as follows:

r=oco pl=m p,¢=2m
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(W15|r|to1s) = 1.5 bohr (18)

[The most probable distance from the nucleus corresponding to the 1s state is
the radius r,,, where the 1s radial distribution function (cf. Mortimer P. 593-
594) is maximum. By solving the equation “£r2¢?, = 0, we obtain r,, = 1 bohr.
The most problable distance r, is lower that the expectation value (¢14|r|¢15)
because the function 7217, (r) is not equally distributed around its maximum
(due to the exponential tail).]

Similarly, from the expression of 1as:
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(Yas|P[th2s) = (47 )2 /_0 r(2 —r)le 2 ridr (19)

ar = 3,—T e 4 _—r = 5 —r
(as|r|thas) = 3T[4 rle "dr — 4 rte”"dr + rSe~"dr] (20)

™ r=0 r=0 r=0
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(Yas|r|thas) = 5[41—4 —AE+El= g[8 x3-8x124+8x 15  (21)
(as|r|1bas) = 6 bohr (22)

As expected (Yas|r|tas) > (Y15]7|1s)-
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THERMODYNAMICS

1. Analyzing binary phase diagrams. Shown on the following page is a hypothetical phase
diagram (Phase diagram 1) for a closed binary system (call the two components generically
A and B). The system behaves as a regular solution in the solid state, and an ideal
solution in the liquid state. Note that the qualitative shape of the molar free energy of the
regular solution G* curve vs. composition is similar to the shape of the molar free energy

change on mixing in the regular solution vs. composition(A(_Jmi"’RS =G™ - 5’“’”"). Answer

the following questions about the given phase diagram:

3.012 PS 8

a. Using the diagram and the given information, construct qualitatively reasonable

curves for the molar free energies of the solution vs. composition (Xg) for each phase
at the temperatures denoted T4 and T, —you can use the ‘frames’ provided below or
sketch it on another sheet of paper. Mark the identity of each free energy curve you
draw.

See diagrams below.

On the free energy diagrams you have sketched, draw in any common tangents that
are present (qualitatively). Along the Xg axis, mark the compositions that bound the
ends of each common tangent with a number or letter designation. Finally, mark
these same letters/numbers (from both free energy graphs) along the Xz axis of the
phase diagram, to show where those compositions lie on the phase diagram. Use
vertical dashed lines to mark where these compositions intersect with features on the
phase diagram.

See diagrams below.
Write an expression for the phase fraction of each phase present at composition X’ at
temperature T4, in terms of the composition points you marked on the phase diagram
in part (b).

The phase fractions for the point (X’, T¢) are obtained by applying the lever
rule to the tie line running from X, to X, at temperature T+:

fa] = )_5')32 = (X2 _X')
X1X2 (Xz _Xl)

o XX (XX
X1X2 (Xz _Xl)

(where the X’s with bars are meant to represent line segments).
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d. Mark on your free energy diagram for temperature T, the free energy change that

occurs if liquid with composition X’ transforms to the stable state.

See diagram below.

Now, let’s look at phase diagram 2 on page 4. This system also has regular solution
behavior in the solid state and ideal solution behavior in the liquid state. Use your
analyses of phase diagram 1 and your understanding of how the regular solution
mixing free energy varies with temperature to help you predict what the free energy
curves at temperatures T4, T,, and T3 must look like (qualitatively) to obtain this phase
diagram.

The diagrams are shown below. We see that this completely different phase diagram
arises from a rather simple conceptual change in the free energy behavior of the
material: The liquid free energy curve ‘passes through’ the regular solution free
energy curve as temperature drops before the regular solution phase separates at the
critical temperature (i.e., the liquid solidifies to solid o at a temperature above the
critical temperature of the solid a solution). In this situation, a eutectic diagram does
not form.
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PHASE DIAGRAM 1
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PHASE DIAGRAM 2
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