Understanding exponential functions

Taylor Series

$$e^{x} = 1 + x + x^{2}/2! + x^{3}/3! + ... x^{n}/n! = \sum_{n=0}^{\infty} x^{n}/n!$$

A Learning Curve

(why you get better with time, assuming other to be variables constant)

Q = amount of specific knowledge At any time t, Q changes at a rate proportional to the amount of Q present.

dQ/dt = kQ (k must have units of t-1, i.e., a rate)

$$dQ/Q = k dt$$

$$Q = Q_0 e^{kt}$$
 (unbounded growth at rate kQ)

Alternately for asymptotic growth to Q_f:

$$Q = Q_f (1 - e^{-kt})$$
 (Q increases from 0 to Q_f)

Understanding the solar cell device

- 1. Electronic design
 - a. semiconductor material
 - b. p-n junction
 - c. top contact
 - d. bottom contact
 - e. backside electric field
 - f. interface passivation
- 2. Photonic design
 - a. Anti-Reflection (AR) coating
 - b. Lambertian frontside texture
 - c. backside diffractive element
 - d. backside reflector

MIT OpenCourseWare http://ocw.mit.edu

3.003 Principles of Engineering Practice Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.