1. One gram of nitrogen is contained in a constant volume tank at low pressure. Assuming nitrogen to be an ideal gas, calculate the amount of heat required to rise its temperature from 300 to 1000K.

For nitrogen $C_p = 6.529 + 1.250x10^{-3} * T \text{ (in cal/(gram.mol)K.}$

(hint: use the relation $C_p - C_v = R$)

For constant volume process there is no work done and the first law implies $\Delta Q = \Delta U$. Since nitrogen is taken to be an ideal gas

$$\Delta U = \int_{T_1}^{T_2} C_v dT$$

To get C_v , we use the relation $C_p - C_v = R$.

$$\Delta Q = \int_{T_1}^{T_2} (C_p - R) dT$$

(where R = 1.987 cal/(g.mol)K).

Substituing back,

$$\Delta Q = \int_{300}^{1000} (6.529 - 1.987 + 0.00125 * T) dT$$

Integrating

$$\Delta Q = 4.542(1000 - 300) + 0.00125/2 * (1000^2 - 300^2) = 3748cal$$

In joules, 3748 cal = 15,682 Joules.

2. Find the change in the internal energy of a pound of O_2 (assume ideal gas) heated from 20C to 30C at constant pressure of 1atm. Calculate heat capacity at constant volume and internal energy of the system. (specific heat capacity of $O_2 = 0.231 \text{ cal/g}$. K).

One pound of O_2 equals 453.6 gms of O_2 .

Using the First law of thermodynamics,

$$dU = dQ + dW$$

$$P\Delta V = NR\Delta T$$

and from the definition of C_p $(C_p = \frac{dQ}{dT_P})$

$$C_p \Delta T = \int dQ$$

From the first law, the change in internal energy is given by

$$\Delta U = C_p \Delta T - nR\Delta T$$

Remember that the specific heat capacity is given in 'per gram' units. Since O_2 is a diatomic molecule, one mole of O_2 weighs 32 gms. plugging these conversions in the above equation would lead to $\delta U = 766.5$ calories.

3. Find the change in the internal energy for a crystalline solid with dielectric constant ϵ with the application of external electric field. Assume that the solid has linear response. Assume that the laboratory frame coincides with the crystal a,b and c axes.

Please refer to Example Problems Week 4.