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Lecture 35

Introduction to Surface Thermodynamics

Last Time

Electrochemical Potential

Nernst Equation

Estimate of the Excess Energy Associated with Surfaces

In the treatment of the equilibrium of phases the effect of the surface that separates the
various phases was neglected.

In other words, no distinction was made between systems that had an abundance of surface
and those that do not—there was no distinction made between:

α

β β

α

Figure 35-1: Including the effect of interfaces and surfaces. The treatment of equilibrium
up until now treated these two systems as being alike even though one obviously has
much more surface (and thus any energy associated with that surface) than the other.

Consider, as an example, that an atom on a surface as having a 50% higher energy than
those in the bulk, then there will be an extra energy associated with the surface of a sphere.
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To estimate how much energy is associated with the surface let:

surface area ≡ surface area of α-phase = 4πR2
s

volume ≡ volume of α-phase =
4

3
πR3

s

The energy of the system is:

U
XS

=
NsurfUsurf + NbulkUbulk

Ntotal
(35-1)

Letting the energy of an atom on the surface be half again that of the bulk:

Usurf ≈ 3

2
Ubulk (assumption) (35-2)

U
XS

=

(
1 +

1

2

Nsurf

Ntotal

)
(35-3)

If Ω is the volume per atom and RA is the radius of an atom, then

Nsurf =
(Surface Area)RA

Ω

Nbulk =
(Volume)

Ω

(35-4)

Letting Rs be the radius of the sphere:

U
XS

=

(
1 +

3RA

2RS

)
(35-5)

How small does the sphere need to be in order that the excess is about 1%?

RS ≈ 150RA (for excess of about 1 percent) (35-6)

This is pretty small, but important important in many systems.

Gibbs Treatment of the Interfacial Energy

Note the atoms at the surface were treated as being somehow different than those of the
bulk. This idea can be extended rigorously to treat the interface as a relatively thin layer.
This thin layer will be treated as a separate “quasi-two-dimensional phase.”

The original Gibbs idea was as follows: Suppose the composition is different between to
phases (but dictated by µα

i = µβ
i , of course). There is no requirement that the concentration

should be uniform in the vicinity of the interface:
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Figure 35-2: Illustration of the composition in the vicinity of a real interface.

The Gibbs treatment extends each of the homogeneous phases up to a mathematical surface:
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Figure 35-3: Gibbs idealization of the interface as a mathematical dividing surface.

Subtract the real system in Figure 35-2 from its idealization in Figure 35-3 to define an
excess quantity associated with the mathematical surface “The Gibbs Surface” which has no
volume associated with it, but excess extensive quantities.

If the following illustration represents a thermodynamic system:

n
∧

I-phase

O-phase

δn
→

Figure 35-4: Illustration of an interface separating two phases. The extra surface rep-
resents the motion normal to itself and is used in the derivation of Equation 35-13.

For the surface phase:

dUsurf = TdSsurf + γdA +
C∑

i=1

µidNi
surf (35-7)

where A is the surface area of the interface.
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What is γ?
Obviously,

γ =

(
∂Usurf

∂A

)

constS ,constNi
surf

(35-8)

But, it also represents the work done to increase the surface area

d(γA) = Fdl =

γwdl = Fdl

=⇒ γ =
F

w

(35-9)

where a force F is applied to a surface of width w to extend its length l.

F

w

Figure 35-5: The mechanical implications of surface tension.

This is the surface tension, it has units of force per unit length or, equivalently, surface
energy per area. It is the energy associated with creating surface.36

Consider the entire system:

δUtotal = δU inside + δUsurf + δUoutside

= TδSinside − PδV inside +
C∑

i=1

µiδN
inside
i

+ TδSsurf + γδA +
C∑

i=1

µiδNi
surf

+ TδSoutside − PδV outside +
C∑

i=1

µiδN
outside
i

(35-10)

Because the surface represents an object that can resist pressure, it can no longer assumed
that the pressures on the inside and the outside phase are equal.

36Note: in solids, another term can arise which is associated with stretching the existing surface—this is
called the surface stress.
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For equilibrium dU = 0, along with the temperature and chemical potentials being uniform:

γδA− PδV inside − PδV outside (35-11)

Imagine that the surface moves normal to itself (such as in Figure 35-4)
Then the following relations hold:

δV inside = Aδn̂ and δV outside = −Aδn̂ (35-12)

δA = (κ1 + κ2)Aδn̂

= (κ1 + κ2)δV
inside

= (
1

R1

+
1

R2

)δV inside

(35-13)

where K1 and K2 are the “curvatures” of the surface in each of two perpendicular planes,
where the axis of intersection is normal to the surface.

κmean ≡ κ1 + κ2 (35-14)

is called the “mean curvature” of the surface 1/R1 = K1, and 1/R2 = K2 where R1 and R2

are the radii of curvature.
Putting equations 35-12, 35-13, and 35-14 together, the following important relation holds:

γκmean = P inside − Poutside (35-15)

which is known as the Gibbs-Thompson equation. It relates the difference in pressure at
an interface to its surface tension and curvature.

Curvatures of Simple Surfaces

The relation:

δA = κmeanδV =

(
1

R1

+
1

R2

)
δV (35-16)

was used above to relate the pressure difference across an interface. If the pressure is to be the
same within each phase, then at equilibrium a surface must have constant curvature.

Consider how curvature relates to some geometrical objects that have “constant mean
curvature.”

For the sphere:
∂A

∂V
=

∂A

∂RS

∂RS

∂V
=

8πRS

4πR2
S

=
2

RS

= κmean (35-17)

There is one radius of curvature for each perpendicular plane with an axis normal to the surface
at each point.

For the cylinder:
∂A

∂V
=

∂A

∂RC

∂RC

∂V
=

2πL

2πRCL
=

1

RC

= κmean (35-18)
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Fundamental relations for surfaces
In this section it will be shown that there are additional solubility effects associated with
interfaces.

Consider:

dUsurf = TdSsurf + γdA +
C∑

i=1

µidNi
surf (35-19)

since the dependent variables are all extensive, we can integrate (i.e. homogeneous degree 1 in
all of its variables), therefore

Usurf = TSsurf + γA +
C∑

i=1

µiNi
surf (35-20)

Taking the derivative (as was done when deriving the Gibbs-Duhem equation);

dUsurf = TdSsurf + SsurfdT + γdA + Adγ +
C∑

i=1

µidNi
surf +

C∑
i=1

Ni
surfdµi (35-21)

comparing to Equation 35-19,

0 = SsurfdT + Adγ +
C∑

i=1

Ni
surfdµi (35-22)

which expresses a relation between variations of the intensive degrees of freedom for a surface
to remain in equilibrium.

Dividing through by the total surface area (so as to normalize by the area, creating derived
intensive variables) and defining

S̃surf =
Ssurf

A
(35-23)

as the entropy of the surface per area, then,

0 = dγ + S̃surfdT + Γ1dµ1 + Γ2dµ2 + . . . ΓCdµc

= dγ + S̃surfdT +
C∑

i=1

Γidµi

(35-24)

where

Γi ≡ Ñi
surf (35-25)

is the standard notation for the excess surface concentration.
Holding everything (temperature, et cetera) constant except µ1, we get a relation that

expresses the relation between the change in surface tension to the change in chemical potential
of an absorbing species: (

∂γ

∂µi

)

constantT,µj 6=µi

= −Γi (35-26)

This is the “Gibbs Absorption Isotherm.”
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Note that if a species absorbs to the surface Γi > 0 and the surface tension decreases as
the chemical potential of that species is increased.

The Conditions of Equilibrium where Several Surfaces Intersect

Consider the case where three different phases make contact:

α−phase

ζ−phase

β−phase
Aζα

Aβζ

Aαβ

Figure 35-6: Intersection, or triple line, where three phases make contact in space.

Considering

dUsurf = γαβdAαβ + γβζdAβζ + γζαdAζα

must be a minimum, one may derive two relations for the angles of contact:

sin φαβ

γαβ

=
sin φβζ

γβζ

=
sin φζα

γζα

(35-27)

which is the general equation the angles at a triple line, called Young’s equation, where

γζα

γβζ

γαβ

φβζ

φαβ

φζα

Figure 35-7: The definitions of the terms in Young’s Equation, Equation 35-27.
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which is equivalent to the “force balance” where each of the γ are considered the forces applied
to the vertex.

For the special case in which one interface is constrained to be flat, as in

γlv

γsl

liquid

solid

vapor

γvsφ

Figure 35-8: o

ne can derive (by force balance most simply)

γlv cos φ + γsl = γvs

cos φ =
γvs − γsl

γlv

(35-28)

which is Young’s equation for flat surfaces.

φ ≡ wetting angle 0 < φ < 180◦ (35-29)

The Shapes of Things
Above, γ has been assumed to be isotropic. Under this assumption, a finite (isolated) volume
body will reduce its total surface energy to a minimum. The result for an isolated body for
isotropic surface tension is a sphere.

Figure 35-9: The minimizing surface for a fixed volume with isotropic surface tension.

However, for crystals, γ is a function of the orientation of the surface γ(n̂). For example,
in 2-D
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γ(θ)

Figure 35-10: Example of how the surface tension might depend on the orientation of
n̂ of a surface.

The shape is given by the Wulff construction:

Figure 35-11: Example of the Wulff construction to calculate the minimizing surface for
a fixed volume with anisotropic surface tension γ(n̂). The interior envelope in the right
figure is the minimizing shape in two dimensions.

The Wulff construction is performed as follows:37

For each orientation n̂, draw a ray from the origin to the surface of γ(n̂). At the end of
each ray, construct the perpendicular half plane. The interior of the envelope that results from
all such half planes is the minimizing shape for a finite isolated volume.

37The Wulff theorem, which establishes the Wulff construction is the minimizing surface is surprisingly hard
to prove, but can be understood on the basis of what has been learned in thermodynamics course in a paper by
J.W. Cahn and W.C. Carter, Crystal shapes and phase equilibria: A common mathematical basis, Met. Trans.
A, pp 1431, (1996).


