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Lecture 32

Unstable Solutions

Last Time

Other Types of Phase Diagrams

Models for Solutions

Limiting Behavior for Dilute and nearly Pure Solutions

Non-Ideal Solution Behavior

In this section, a simple model for the enthalpy of mixing will be derived. It will be shown
that a positive enthalpy of mixing tends to make a system separate and have a miscibility
gap at low temperature. A negative enthalpy of mixing tends to favor stable homogeneous
solutions.

Consider two neighbors in a solution. The probability that one of the neighbors is an
A-type or a B-type is simply:

πA =
NA

NA + NB

= XA and πB =
NB

NA + NB

= XB (32-1)

Therefore the probability that a given “bond” is an A–B type is:

π(AB) = πAB + πBA =
2NANB

(NA + NB)2
= 2XAXB (32-2)



MIT 3.00 Fall 2002 c© W.C Carter 218

If each atom has z nearest neighbors, the number of bonds, total, is

Btotal =
z

2
(NA + NB) =⇒ Btotal =

z

2
(32-3)

The bond density of A–B type is therefore:

B(AB) = zXAXB (32-4)

If the energy per A−B bond is ωAB
31 then the enthalpy density (due to the A–B bonds)

is:
HRS

(AB) = zωABXAXB (32-5)

Similarly, the bond density of A-types is BAA = z
2
XAXA so that HAA = z

2
X2

AωAA. Similarly

HBB = z
2
X2

BωBB.
Putting this all together

HtotalRS = z(ωABXAXB +
ωAA

2
X2

A +
ωBB

2
X2

B) (32-6)

HtotalUM =
zωAA

2
XA +

zωBB

2
XB (32-7)

Therefore since, ∆Hmixing = Hsol −Hpure mix:

∆HRS =
z

2
XAXB(2ωAB − ωAA − ωBB)

≡ z

2
XAXBωRS

(32-8)

∆GRS = ∆HRS − T∆SIS

=
z

2
XAXBωRS − T [(−R)(XA log XA + XB log XB)]

(32-9)

This is the Regular Solution Model

31relative to no bond having zero energy, i.e., ωAB < 0 is more stable.
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Behavior of the Regular Solution Model

Above, a “first-order” correction to the ideal solution model based on an atomic averaging
for the enthalpy of mixing.

This is called the regular solution model.

∆GRS = ∆HRS − T∆SIS (32-10)

where

∆HRS =
z

2
XAXB(2ωAB − ωAA − ωBB) =

z

2
XAXBωRS (32-11)

and

∆SIS = −R(XA log XA + XB log XB) (32-12)

Consider both terms:

XB

∆H—
R
S

0

zω/8

ω>0

ω<0

Figure 32-1: The behavior of enthalpy in the regular solution model.

Note that ω < 0 favors mixing, and makes sense because ωAB is more negative than
〈ωAA + ωBB〉.
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Figure 32-2: The behavior of the ideal entropy of mixing: ∆S
IS

= −R(XA log XA +
XB log XB)

So that, taken together: ∆Gmix = ∆Hmix − T∆Smix:

XB

∆G—
R
S

ω<0

zω/8 − RTlog2

ω>0, small T

ω>0, large T

Figure 32-3: The behavior of the molar Gibbs free energy of mixing for the regular
solution.

Note that the limiting behavior for pure or extremely dilute solutions is dictated by:

lim
x→0

∂∆Gmixing

∂x
= −∞ (32-13)

A solution can always lower its free energy by dissolving at least a small amount component.
There is thermodynamically always some finite solubility (but it can be, and often is, very, very
small). This implies that the width of a single-phase region must always be finite.

Consider the case where ω > 0, so the system will tend to “unmix” at low temperatures.
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Figure 32-4: The dependence of the regular solution model on temperature for ω > 0.
At low temperatures, the curve develops a “self-common-tangent” and is thus unstable at
compositions within the tangent points with respect a decomposition into a composition-
rich and a composition-poor phase.

For the case of a regular solution, the curve is symmetric around X = 1/2, and in this case
we can calculate the positions of the common tangents:32

∂∆G
RS

∂x
=

zω

2
− zωXB + RT [(1 + log XB) + (−1− log(1−XB))] = 0 (32-14)

However, this is hard to solve (see Equation 32-15).
The critical temperate can be determined analytically by noting that as the common tan-

gents form that the curvature changes sign at XB = 1/2.

∆G
RS

=
z

2
ωXB(1−XB) + RT (XB log XB + (1−XB) log(1−XB))

∂∆G
RS

∂XB

= zω(
1

2
−XB) + RT (log XB − log(1−XB))

∂2∆G
RS

∂XB
2 = −zω + RT (

1

XB

+
1

1−XB

) = 0

(32-15)

At XB = 1/2, the zero first appears at

TRS
crit =

zω

4R
(32-16)

32Because the curve is symmetric around X = 1/2 the common tangents, in this special case, will coincide
with the minima of the molar free energy of solution.
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Spinodal Decomposition

For those cases in which the molar free energy of mixing has regions of negative curva-
ture (as in the example of the regular solution model), the mechanism by which the system
decomposes into its equilibrium phases is different than the mechanism when the curvature
is positive. This distinction between mechanisms when the curvature is negative (called the
spinodal decomposition mechanism) when the curvature is positive (called the nucleation and
growth mechanism) is important for kinetics. It will be useful to discuss the spinodal mecha-
nism in the context of free energy curves.

Consider a part of the free energy curve where the curvature is negative:

∆G
—

sol

X°

Figure 32-5: ∂2Gmix

∂X2
B

< 0

Suppose that a material is manufactured with a composition X◦ that is a function of some
spatial coordinate z:
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Figure 32-6: Composition as a function of a spatial coordinate with a small fluctuation
about a fixed value of composition.
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Suppose that a very small fluctuation occurs and consider what happens to the free energy
for the small fluctuation:

X+

X− ∆G
—

(unmixing) < 0

Figure 32-7: The Gibbs free energy construction for a small decomposition fluctuation.

Apparently, the free-energy charge is negative for an arbitrarily small fluctuation in com-
position such that one part of the system gets more concentrated at the expense of another.
The system is inherently unstable and and phase separation will proceed as illustrated:
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t3 > t2
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t1

Figure 32-8: Composition profiles drawn at different times during decomposition.

This process is called spinodal decomposition and it occurs spontaneously when

∂2∆Gmixing

∂XB
2 < 0 (condition for spinodal decomposition) (32-17)

Consider the part of the curve where the curvature is positive but inside the miscibility gap
(miscibility gap is another way of saying the two-phase region):
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Figure 32-9: The molar free energy change for the case (∂2Gmix)/(∂X2
B) > 0.

Apparently, the free energy increases. Therefore, the system is “stable” with respect to
small fluctuations. In other words, it is metastable with respect to infinitesimal composition
fluctuations.

Such a system is clearly unstable to the separation into the limiting compositions given by
the common tangent construction. How does the system phase separate?

∆G
—
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X°

Figure 32-10: Illustrating that a large composition difference is required to nucleate a
the stable phases.

Apparently an average composition within the two phase region, but outside of the spinodal
curves requires large composition fluctuations to decrease the energy. Therefore, the system
phase separates as illustrated in the following cartoon:
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Figure 32-11: Illustration of the nucleation of an unstable phase. For nucleation—by
contrast to phase separation by spinodal decomposition—the new phase must initiate
with a composition that is not near that of the parent phase. Nucleation is a phase
transition that is large in degree (composition change) but small in extent (size); whereas
spinodal decomposition is small in degree but large in extent.

A process requiring a large composition fluctuation is called “nucleation.” After the nucleus
forms, the new phase grows. Together, the process is called nucleation and growth.

This kinetic information can be graphically codified into the phase diagram:
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Figure 32-12: A phase diagram with a spinodal miscibility gap.

Nucleation and Growth
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Nucleation of a new phase occurs when a phase in an alloy of composition X◦ is unstable
with respect a composition that is not near X◦.

T

P =constant

α

β

XA = 1
XB = 0
pure A

XA = 0
XB = 1
pure B

Xeq
αXeq

β

Xus

XB

Figure 32-13: Example of a phase diagram that might require nucleation and growth for
a phase transformation to occur. Suppose that an β-phase at composition X◦ is quickly
cooled into the two-phase (α-β) region and then the transformation to the equilibrium
phases and compositions is allowed to occur.

The transformation will require nucleation of an α-phase at a composition that, when
combined with the molar free energy of the resultant α-phase, gives a mixture with a molar
Gibbs free energy that is less than the value of Gβ(X◦)

In other words, ∂2G/∂X2 > 0 at X = X◦, but there is some Xnuc for which Gmixture(〈X◦〉)−
G(X◦) = ∆G

nuc
< 0. The negative ∆G

nuc
is the driving force for the creation of a new phase.
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Figure 32-14: Illustration of the driving force for nucleation derived from the molar
Gibbs free energies of solution for the case where the nucleated α-phase appears at its
equilibrium composition Xα

eq at the expense of enriching the B-composition of the β-

phase to its equilibrium concentration Xβ
eq. ∆Gnuc is the (negative) distance between

the β-phase solution free energy curve and the common tangent. ∆µA is the difference
of the two tangents, evaluated at the pure A axis. Similarly, ∆µB is the difference

extrapolated to the pure B axis. Because ∆µA = µα
A−µunstable

A (X◦) is negative, there
is a driving force for the A-component to diffuse towards a nucleating α phase from the
parent unstable phase.

Notice that the driving force for the phase transformation goes away as the unstable com-
position X◦ approaches the limiting compositions on the tie-line.

The driving force for nucleation is important because it has to be utilized to overcome the
additional energy associated with the interface between the α and the β phase. This is the
interfacial energy.

The surface (or interfacial) tension is the amount of energy that is required to produce
interface per unit area interface. Let the interfacial tension between the α and the β phase be
γαβ and suppose that when the α-phase nucleates, that it forms a little sphere of radius R:

2R

unstable β−solution
            at Xo

nucleus of

α−phase at Xαeq

γαβ (interfacial surface tension)

Figure 32-15: Illustration of the nucleation process.

The total (extensive) extra energy required for the phase transformation is:
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∆Gsurface = γαβsurface area of nucleus = 4πγαβR2 (32-18)

Therefore the total free energy required to create a nucleus is given by

∆Gnucleus = 4πγαβR2 − 4π

3
|∆Gnuc|V αR3 (32-19)

where |∆Gnuc| is the (magnitude) of the molar driving force to create the nucleating α-phase
and V α is its molar volume.

Therefore the total energy has contributions from two parts:

G

R (nucleus size)

∆G=0

interface (R2) 
contribution

volume (−R3) 
contribution

total G

G*

R*

Figure 32-16: Total (spherical) nucleation energy as a function of nucleus size. The
interfacial contribution opposes nucleation while the volumetric driving force propels
nucleation. A small sizes, the interfacial term dominates and nucleation is prevented.
At larger sizes, the volumetric term dominates.

If a nucleus can attain a size that exceeds the maximum, G∗ of the curve in Fig. 32-16, then
it can increase its size while continuously decreasing its free energy—-therefore any nucleus
with size R∗ or larger will grow continously.

To calculate this critical size, take the derivative of Eq. 32-19 and set it equal to zero and
solve for R:

R∗ =
2γαβ

|∆Gnuc| (32-20)

and substituting this radius into the expression for the nucleation energy gives the nucle-
ation barrier energy:

G∗ =
16π(γαβ)3

3(∆Gnuc)2
(32-21)

This expression illustrates that nucleation must occur at a critical size and that the energy
barrier to nucleation can be reduced by a decrease in the interfacial tension or by an increase
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in the volumetric driving force.33 The time required for the phase transition to occur is related
to the time required for a critical composition fluctuation to occur that will produce a critical
nucleus of size R∗—-and that time increases exponentially with the barrier G∗.

33By contrast, spinodal decomposition occurs without a nucleation barrier—it is a “barrierless” phase trans-
formation.


