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Lecture 26

The Gibbs Phase Rule and its Application

Last Time

Symmetry and Thermodynamics

Cf + 2 Variables

C(f — 1) Equations for Continuity of Chemical Potential

f Gibbs-Duhem Relations (one for each phase)

D =C — f — 2 Degrees of Freedom Left Over

_ The Gibbs Phase Rule

D+f=C+2 (26-1)

The Gibbs phase rule is a very useful equation because it put precise limits on the number
of phases f that can be simultaneously in equilibrium for a given number of components.

What does Equation 26-1 mean? Consider the following example of a single component
(pure) phase diagram C = 1.
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Figure 26-1: A single component phase diagram. On the right figure, the color represents
a molar extensive quantities (i.e., blue is a low value of V" and red is a large value of V)
that apply to each phase at that particular P and 7.

Consider a single-phase region:

D=2—f+C=2-1+1=2
This implies that two variables (P and T') can be changed independently (i.e., pick any dP

and dT') and a single phase remains in equilibrium.

Consider where two phases are in equilibrium:
D=2—-f+C=2-2+4+1=1,
There is only one degree of freedom—for the two phases to remain in equilibrium, one variable
can be changed freely (for instance, dP) but then the change in the other variable (i.e., dT)

must depend on the change of the free variables:

dP
d_T:f(P’T)
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Finally, consider where three phases are in equilibrium then:
D=2-3+1=0.
There can be no change any variable that maintains three phase equilibrium.

Various Confusing Issues on Applications of D + f=C + 2 _

Consider a pure liquid A in contact with the air. The degrees of freedom can be determined
in several equilvalent ways.

A Consider the system composed of two components, the pure liquid A and air and restrict
that the total pressure is 1 atm.
(D+f=C+2)—(D+ f=C+1).
Therefore, D =2 —-2+1=1.

B Considering that the system consists of three components: A, O, Ny and has two additional
restrictions: 1) ¥P =1 Py /Py, = constant, then (D+ f =C+2) — (D+ f = C+0).
D =3—-2+0=1 as before.
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C Disregard the air: ¢'=1. f = 2 and therefore D = 1. The liquid has an equilibrium vapor
pressure which is a function of temperature. One can pick either the vapor pressure or
the temperature independently, but not both.

Single Component Phase Equilibria

When there is only one degree of freedom in a single component phase diagram, it was
shown above that there must be a relation between dP and dT for the system to remain in
two phase equilibrium. Such a relation can be derived as follows:

0 — Ssolid dT — Vsolid dP
dP AS AH
_ — = =
dr equilibrium AV Teq AV

(26-2)

Equation 26-2 is the famous Clausius-Clapeyron equation.

Consider the behavior of the molar free energy (or ) on slices of Figure 26-1 at constant
Pand T:
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Figure 26-2: Considerations of the molar Gibbs free energy on slices of the single com-
ponent phase diagram along lines of constant T" and constant P.
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Figure 26-3: Behavior of G = 1 at constant P as a function of 7. Where the curvature
of G changes sign, the system is unstable. The liquid and vapor curves must be con-
nected to each other and this is illustrated with the "spiny-looking” curve with opposite
curvature. The curve for solid is not connected to the others.
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Figure 26-4: Behavior of G = j at constant T as a function of P.

P (Pressure)

Gas (Vapor)

T (Temperature) T (Temperature)

Figure 26-5: Example of single component phase diagram plotted with one derived
intensive variable.

What would the plot look like with two extensive variables plotted?



