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Lecture 21

Mathematics of Thermodynamics

Last Time

When a chemical species can be transferred between two phasesthe chemical potential of that species is equal at equilibrium

Chemical Potential of an Ideal Gas

General Solutions

Reacting Mixtures of Ideal Gases
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Mathematics of Exact Differentials in Thermodynamics

Our considerations of equilibrium have produced some useful results—these results are
usually in the form of some differential expression between quantities.

We will now consider some the useful mathematical relations that follow from the combined
form of first and second law.

First

dU = TdS − PdV +
C∑

i=1

µidNi (21-1)

This differential implies

(
∂U

∂S

)

const V,Ni

= T (S, V, Ni)

(
∂U

∂V

)

const S,Ni

= −P (S, V, Ni)

(
∂U

∂Ni

)

const V,S,Nj 6=Ni

= µi(S, V, Ni)

(21-2)

We can think of this equation as defining a “rolling tangent plane”
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U

Extensive Variable, x

xo

U − U(xo) = ∂U   (x − xo )
∂x

x=xo

= F(xo) (x − xo)
Φ(F(xo))=
      U(xo) − F(xo)xo

x=0

Figure 21-1: Illustration of a rolling tangent plane in one dimension. Evaluated at some
arbitrary point xo, the slope of the plane is the conjugate force to that variable, F (xo).
Using the equation of the tangent plane, we can define a new function. Φ(F ), which is
the the intercept of the tangent plane with slope F and the internal energy. The value
of the slopes of the tangent surface to U are related to the conjugate forces—the values
of these forces are in turn functions of where the tangent plane is placed. In other words,
the conjugate forces are also functions of the extensive variables.

The Other Energy Functionals: The Legendre transformations

From Equation 21-1, the internal energy has the “natural variables” U(S, V, Ni). To change
to another set of natural variables, a new function is defined by subtracting off a particular
conjugate pair:

For example: Enthalpy
H = U + PV ≡ H(S, P, Ni) (21-3)

For example: Helmholtz Free Energy

F = U − TS ≡ F (T, V,Ni) (21-4)

For example: Gibbs Free Energy

G = U + PV − TS = H − TS = F + PV ≡ G(T, P, Ni) (21-5)
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“The Legendre transformation” is defined as the procedure of subtracting off conjugate
pair to change that particular variable.

To see how the new variables appear, consider the Helmholtz free energy:

dF = d(U − TS) =dU − TdS − SdT

=(TdS − PdV +
C∑

i=1

µidNi)− TdS − SdT

=− SdT − PdV +
C∑

i=1

µidNi

(21-6)

implies (
∂F

∂T

)

const V,Ni

= −S S(T, V, Ni) (21-7)

Doing the same for d(H) = d(U + PV )

And for d(G) = d(U − TS + PV )
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Trivial Example of a Legendre Transform
Suppose that the internal energy is composed of the thermal part plus a simple spring:

U(S, x) = TS + Fx

= TS +
k

2
x2

(21-8)

where

F (x) =
∂U

∂x
= kx (21-9)

The Legendre transform from the x-variable to the F variable is

Φ = U(S, x)− Fx

= TS +
k

2
x2 − kx2

= TS − k

2
x2

= TS − 1

2k
F 2

= Φ(S, F )

(21-10)

It is fairly easy to show that the inverse Legendre transformation is simply U =
Φ− (∂Φ/∂F )F .

LeChatelier’s Principle

Another important set of thermodynamics concepts fall under the category of LeChatelier’s
principle. It is fundamentally an easy idea, but for some reason it is taught in fairly confusing
ways.

The formal statement of LeChatelier’s principle is something like this:

“If a body at equilibrium is disturbed by changing one
of its environment’s variables, then the body’s internal
variables will change so as to mitigate the change in en-
vironment.”

This is a pretty confusing statement for something that is fairly easy to understand. Per-
haps, the following statement is easier? “If a stimulus would produce an effect of magnitude 1
in a material that is constrained not to change its internal degrees of freedom, then an uncon-
strained material would have a response that is less than or equal to magnitude 1.” No, not
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better? Oh, well.
Also, I’ve never found a good proof of this which leads to any additional physical enlighten-

ment, so I won’t disenlighten you by giving one (if you want to get confused, see the discussion
by Landau and Lifshitz, Section 2.2; it is the best proof that I know of).

I think it best to give a few examples.

1. If the pressure is increased, the system will find an equilibrium that decreases its volume.

Remember our friendly ideal gas reaction:

H
2(vapor) +

1

2
O

2(vapor)
⇀↽ H2O(vapor)

1.5 moles ⇀↽ 1moles
(21-11)

If we increase pressure, will the composition favor the reactants or products?

Keq =
PH2O/P◦

PH2
/P◦(PO2

/P◦)
1
2

(21-12)

(
Pnew
P◦

) 1
2

Keq =
XH2O

XH2
X

1
2

O2

(21-13)

2. A crack in a material:
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F

F

Figure 21-2: A crack in a material—what is the response of the material to an increased
load?

If the load is increased, the stiffness decreases by propagating the crack.

3. Suppose that each homework set I give you is about the same amount of work. You spend
an average of 〈h〉 hours per problem. If I were to assign ten times as many problems this
week 〈h〉 would tend to decrease.

One last note about LeChatelier’s principle: it pertains only for small changes applied to an
equilibrium system that is not near a condition of instability. If a system is not in equilibrium,
or the change in the external conditions are very great, then we should not expect LeChatelier’s
principle to apply.

As an example, consider a house with the wind blowing past it. The wind blows the door
shut which seems like a violation of LeChatelier’s Principle.

Figure 21-3: The stupid door doesn’t care about LeChatelier’s principle.
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There is also the example of the “Stupid Crack:”


