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Lecture 17

Conditions of Equilibrium

Last Time

The behavior of ∆G near equilibrium

Survey Molar Entropies

Extrapolation to Unstable States

Microscopic Origins of Entropy
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Equilibrium Thermodynamics

The foundations of thermodynamics were developed in an era where steam engines and
production of useful work were the most important issues. Joule was interested in motors and
the original statement of the second law derives from Carnot who was trying to find limits on
the efficiency of work cycles. I’ve avoided this approach of engines and cycles in these lectures
because, today, the most interesting applications of thermodynamics apply to the equilibrium
and near-equilibrium properties of material systems.

A short list of practical applications for which thermodynamics is the essential tool for
understanding includes:

1. Is it possible to make such-and-such a material and, if so, what processing variables make
it possible?

2. If I have so-and-so material and I put it in service in a particular environment, will it
remain that way?

3. What are the limiting properties of such a material? What is the maximum response?

4. What processes make a material unstable?

5. How do I formulate a prediction for how a material will change in time (kinetics)?

Our current understanding of equilibrium, derived from the second law of thermodynam-
ics, derives from a remarkably accomplished paper written by Gibbs at the beginning of the
twentieth century. We will begin by abstracting the first 10 pages of that 300-page paper.
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Figure 17-1: J. Willard Gibbs 1839-1903 , The Architect of Modern Equilibrium Ther-
modynamics.

Unconstrained Equilibrium

Consider a an isolated system, in this case:
dU = 0 and dV = 0

If we consider a system that can only perform PV -work on its surroundings, we can write
for any quasi-static (constantly in equilibrium).

dS =
dU

T
+

PdV

T
(17-1)

Therefore, at equilibrium the entropy must be a maximum or a minimum (dS = 0) (This
is the equation of a tangent plane)
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Figure 17-2: The surface of S as a function of U and V

Since entropy must always increase as a system approaches equilibrium, it must be a maxi-
mum at equilibrium. (In other words, it must be at the summit of a hill with U given as north
and V given as west.)

How to express this maximal relationship?
Let δS represent any possible variation (change internal temperature, distribution, heat

flow, etc.) to the entropy. Then, if the supposed variation also has δU = δV = 0,

(δS)δU=0 , δV =0 ≤ 0 (17-2)

implies S is a maximum and is thus the equilibrium state.
This introduces the concept of a virtual change:
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Equation 17-2 is equivalent to

(δU)δS=0 , δV =0 ≥ 0 (17-3)

(See if you can figure out why—hint: (∂U/∂S)V = T > 0
Implies U is a minimum at constant S and V —and that is what we expect from mechanics.

Figure 17-3: Ball rolling on a surface.

Implications

Consider an isolated system with two separate regions at uniform (but potentially different)
pressures and temperatures.
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Figure 17-4: Region A with pressure and temperature PA and TA enclosing a subregion
B at PB and TB.

Suppose that there is a “virtual” change (i.e. any one of an infinite number of possible
changes) in the system such that δU = 0 and δV = 0.

Any change in B (δUB, δVB) can be chosen as a virtual changes as long as we also pick for
system A, (δUA = −δUB and δVA = −δVB).

Then

δStotal = δSA + δSB

=
1

TA

(δUA + PAδVA) +
1

TB

(δUB + PBδVB)

=

(
1

TA

− 1

TB

)
δUA +

(
PA

TA

− PB

TB

)
δVA

(17-4)

Because δUA is independent of δVB we can find a δStotal > 0 unless

(
1

TA

− 1

TB

)
= 0 =⇒ TA = TB (17-5)

(
PA

TA

− PB

TB

)
= 0 =⇒ PA = PB (17-6)
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These are the necessary conditions for equilibrium in a heterogeneous isolated system: no
spatial variation pressure can exist if the volume can move from region to region (δV ) and no
spatial variation in temperature can exist if energy can flow from region to region (δU).18

18Any energy associated with a change in size of the interface has been neglected; this extra energy, which
derives from the surface tension, will be important later and will alter the condition that the pressures are
equal.


