3.00 Thermodynamics Fall 2002
Problem Set 8 Solutions

Solution 8.1

Hooke’s law for an isotropic linear elastic deformation is given by
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where §;; = 0if 4 # j and d§;; = 1 if ¢ = j. This equation is the component
form of the matrix equation in the Lecture Notes. The above equation can be
inverted to provide
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The elastic energy part of the total energy is given by,
1
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Consider a simple case of cylinder under tensile stress in Z direction. For
this case, only one component of stress tensor is nonzero: o1 = T, 092 = 0,
033 = 0 and J12 = 0923 = 013 = 0.

From Eq. 2,
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where E is the Youngs modulus of the material.
The elastic energy for this deformation is given by
U = 011 * €11 (6)
= T€11 (7)

In the above equation for energy, the sign of energy depends only on €;; com-
ponent (T is given positive quantity).

€11 = ET (8)
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From the above equation, it is clear that the sign of €11 (consequently, the elastic
energy) is positive only for values of v < %

Solution 8.2

The Gibbs-Duhem expression for two phases in equilibrium with fixed compo-



sition is given by,

—S%dT* + V*dP* =Y Nfdp; = 0 (10)

i
—SPdT? + VAdP? -y " Nfdp; = 0 (11)
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For equilibrium between the phases, at the coexistence curve, the chemical
potential, consequently change in chemical potential, of any species in these
phases need to be equal, i.e., du§ = d,uiﬂ = dp. Similarly dP® = dP? = dP and

dT* = dTP = dT.

—S%dT + V*dP — > Nfdp=0 (12)
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—SPdT +VedP = > Nldu=0 (13)
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For a single component system, the compositions are fixed, leading to rela-
tions

—8%dT + V*dP —du =0 (14)
—SPAT + VPdP —du =0 (15)

Subtracting the above relation from the previous one, and rearranging
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Physically Clausius Clapeyron equation provides a relation between thermo-
dynamic potentials for the phases at equilibrium.

Solution 8.3
At the tri-critical point all three phases are at equilibrium. The equilibrium
conditions on thermodynamic potentials are u$ = ,uf =u] =p;, T*=TP =T"
and P* = PP = P7. Tt is also given that X§ =1 - X2, X =1— X and
Xy =1-X}.

The Clausius-Clapeyron equation for the system at equilibrium,

—5%4T* + V*dP® — X%dp% — X&du% = 0 (18)
—884TP + VPdPP — XBduf — XBduh = 0 (19)
=S4T +V7dP" — Xdp)y — Xpduly, = 0 (20)

Applying the conditions on thermodynamic potentials and rearranging the
terms,

—S%dT +V*dP — X(dpa —dup) = dup (21)

—S8dT + VPdP — X5(dpua —dus) = dup (22)
—S7dT + V'dP — X (dua —dug) = dus (23)



Since RHS of the above equations are same, they can be compared with each
other. Equating Eqgs. 21 and 23 with Eq. 22 gives,

—(SP = §7)dT + (V# — V7)dP

dus —dup = 24
—(S* — SAYdT + (V™ — VPB)dP
dpa —dup = ( ) - (ﬁ ) (25)
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On simplification the above two equations give,
AVE=T  AVemBNTH AAGEY AGas
P = (AXB—W - AXa—>ﬁ> (AXB—W - AXCHB) aT (26)

where A(.)*8 = (.)® — (.)%. Also, AS®># can be written in terms of the
enthalpy of transformation and the equilibrium transformation temperature.

To find the relation between dus and dup substitute Eq. 26 into Eq. 21
and Eq. 22 then eliminate d7". On simplifying, the following equation gives the
relation between the changes in chemical potential of the two species at the
triple point.

dua  SY(VP —VBXG+ Ve (=1+X3) + 52V = VX4 + VP (=14 X)) + SB(Ve+ V(-1 + X3) — VoX}) @)
dpp (—57VBXG + 8BVIXG + §7VeXh — §a1 X5 — 38V aX) + §oVAX7)

Solution 8.4

The engineering solution for problem 2 in PS5 is

1
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where,
1 dL

is the coefficient of linear thermal expansion of the material, 8 = 0.005m /K, T
is the initial temperature of the Infinite Corridor, and T; and T are the initial
and final temperatures of the diabolic thermostat.

Let us assume the initial conditions as given in the problem statement : the
temperature of the Infinite Corridor Ty = 20C, and the thermostat also points
to the same temperature, the whole system of infinite corridor and thermostat is
in equilibrium. The stability of the equilibrium is determined by applying small
disturbance to this equilibrium state and examining the magnitude of growth
or decay of disturbance.

Let us apply a small perturbation or disturbance AT to the initial temper-
ature Ty (Tp — To + AT).

The final temperature would be governed by the equation for T’

Tf + AT =

I~ §(T, + AT) (30)

or the change in final temperature is given by,




Written in a more transparent way,

AT B
AT ,B—Lz-a
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In the above equation AT is the applied disturbance and AT is the resulting
change. So the condition for stability is given by

<1.0 (33)

AT’
AT

which implies, for stability the following inequality must be obeyed.
B
B - LiOé

< 1.0, (34)

where | x | is absolute magnitude of .



