3.00 Thermodynamics Fall 2002
Problem Set 5 Solutions

Solution 5.1

a) The simplest way to answer these questions is to calculate the forms for
the equations in the different temperature regimes, evaluate the equations and
store the data in a spreadsheet, and then generate the plots. Notice that the
transformation temperatures are given in C not K in the first table. The molar
heat capacity of the stable phase is given by integrating the heat capacity of the
stable phase up to a transformation temperature where is jumps by the heat of
transformation. This is expressed mathematically below.

( H(298) + [505 Op"dT 208 < T < 395
H(395) + AHo s + [, Cp dT 395 < T < 478
H’(478) + AHp_y + [, Cp dT 478 < T < 591
H'(591) + AH, 5 + for, Cp T 591 < T < 724
H'(124) + AHs o + [, CpdT 724 < T < 749
{ H(749) + AHo 1 + [y, CpdT 749 < T < 1000

Upon substitution by the appropriate heat capacities and the heat of trans-
formation (noting the different units given in the problem set), the analytic
expression for the molar heat capacity of the stable phase is given below.

0+ 5.91(T — 298) + 2.9 - 10~3(T2 — 298?) 298 < T < 395
768 + 800 + 5.21(T — 395) + 3.525- 10~3(T2 — 3952) 395 < T < 478
T(r) = | 2256+ 150+2.98(T — 478) + 5.5 1073(T? — 478%) 478 <T < 591
3413 4+ 130 + 9.0(T — 591) 501 < T < 724
4740 + 20 + 8.4(T — 724) 724 < T < 749
4970 + 440 + 8(T — 749) 749 < T < 1000

b) The molar entropy of the stable phase follows the same scheme as the
molar enthalpy. We are not given the molar entropy of transformation but must
calculate it from the following relation: AStrans = AHtrans/Tirans-

(5(298) + [o05 Cp” /TdT 208 < T < 395
5%(395) + ASu g + foo TP /TAT 395 <T < 478
S = | S°(478) + ASp,, + ffm@:’ JTdT 478 < T < 591 )
57(591) + AS, 6 + fo, CP /TdT 591 < T < 724
5°(724) + ASs_ e + [, Op /TAT 724 < T < 749
| 5°(749) + ASc i + [oy, Cp /TAT 749 < T < 1000
13.2 4 5.91log L +2.9 - 10-3(T — 298) 208 < T < 395

15.142.03 4 5.21log %%Jr 3.525-107%(T —395) 395 < T < 478
5(r) = { 185+0.314+2.98log grg +5.55- 1073(T —478) 478 <T < 591
20.0 + 0.220 + 9.0log z5r 591 < T <724
22.1+ 0.0276 + 8.4log =55 724 <T < 749

22.4 4 0.587 + 8log =5 749 < T < 1000



c) The molar Gibbs free energy of the stable phase is given by G = H —T'S.
The calculation is done in the spreadsheet using full figures for enthalpy and
entropy. The numbers are reduced to the correct number of significant figures
after the calculation. Notice that for phase transformations at the equilibrium
temperature and pressure A@tmns =0.

( 2085(298) + [0 Cp dT — T [50, Cp” JTdT 298 < T < 395
G*(395) + [ib. Cp dT — T [ Cp’ /TdT 395 <T < 478
o G’ (478) + ff;s@::dT -T fj;s@; /TdT 48T <591
G'(591) + [ CpdT —T [ Cp /TdT 591 < T < 724
G'(124) + [, TpdT —T [ Cp'/TdT 724 <T <749
| G°(749) + [, CpdT =T [, Cp /TdT 749 < T <1000
Notice that the slope of this plot is negative as g—? = —Sand S > 0 always.
The curvature is negative as ngéz = —% and C_p >0 and T > 0 always.

d) The plot comes from the data evaluated in a spreadsheet. Notice that
at phase transformations G is constant while H increases. This shows that if
you add heat to plutonium at a temperature corresponding to an equilibrium
transformation temperature the Gibbs free energy will remain constant until
the heat added equals the heat of transformation. Also notice that in general,
G is a decreasing function of H.

e) Assume the system is closed and the hot and cold parts do no work on
each other.

0=2AH. + AH, (7
2(H(Ty) — H(298) = H(1000) — H(Ty) (8)
ar,) = 2100 _32 * H298) _ 547977 /mole (9)

Using the spreadsheet as a lookup tool. This corresponds to the final tempera-
ture of Ty = 486K.
bonus
a | primitive monoclinic
B | C-centered monoclinic
v | face-centered orthorhombic
0 | face-centered cubic
0/ | body-centered tetragonal
€ | body-centered cubic

Solution 5.2

There are two possible solutions depending on how you interpret the defi-
nition of the COE. There is the engineering definition, a = LLO% or the true

definition, a = %%. (Think about the difference between true and engineering

strain.)

Engineering answer By rearranging the engineering definition for the co-
efficient of thermal expansion and integrating, we can arrive at an expression
for the final temperature of the rod. Here, T is the final temperature, Ly is
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Figure 1: Plots of thermodynamic quantities for the stable phases of plutonium
for question 5.1.

the final length of the rod.

Ly—L;1
L; «

Define the rate of change of bar length with change of the thermostat tem-

perature setting as § = 0.005m/C. From this definition where Ty = 20C, we
rearrange to arrive at the following.

Ty —T; = (10)

Ly —Li = p(Ty —To) (11)
Combining these expressions, we can solve for the final temperature.
1
Ty = — [L;oT; — BT, 12
f LiOL _ IB [ i0dy /8 0] ( )

b) When L; = B/« then T is unbounded.

“True” answer By rearranging the “true” definition for the coefficient of
thermal expansion and integrating, we can arrive at an expression for the final
temperature of the rod.

Ly

1



We can make use of the other relation,
Ly —L; = B(Ty - Ty)
Use above relations to eliminate Ly,
BTy —Ti) + Ly = L; x exp(a(Ty — T1)) (14)

This equation falls into the category of transcendental equations that are
generally hard to solve (for T¢). A nice way to get information about the
solutions of these kinds of equations is by graphical representation. The idea
is to plot the LHS and the RHS of the above equation separately and examine
where they intersect. A representative plot for 8 = 0.005, L; = 20cm and
a = 0.001 is given below.
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A trivial solution is Ty = T; which is true for all values of a (this means the
thermostat remains pointing at the IC temperature forever.) However, as shown
in the plot, there exists another temperature at which the length of the bar would
be same as the height of the pointer corresponding to the IC temperature.

The condition for divergence or crazy thermostat is that the curves do not
intersect at any other point apart from T; = Ty. This can be deduced by
comparing the slope of the linear term and slope of the exponential term at
Tf = T().

slope of the line corresponding to the linear term (LHS) = S.

slope of the exponential term (RHS) (at T = Ty) = aL;.
The condition for existence of a ’working’ thermostat (where the diabolical
attempt almost failed) is given by

B8 > aL;. (].5)



Solution 5.3

In each part of this problem, it is necessary to calculate the intermediate
equilibrium temperatures before calculating the entropy change of the isolated
system of blocks.

two by two
ii.
Tii T
AH=1/4| Cpar+1/a| Tdr=0 (16)
T, Ty
1/4C(Ti; — Te) + 1/4Cp(Ti; — Tp) = 0 (17)
T.+ T,
T, = Ttk (18)
2
iii.
Tiii Tiii Tiii
AH=1/4| Cuar+1/2 | Cpar+1/a| Cpar=0  (19)
T. Tii T
1/4C_p(T“Z — TC) + 1/2@(1—;“ - T“) + 1/4@(1‘,“ - Th) =0 (20)
Ty = L ; In (21)

In each of these symmetric processes, the equilibrium temperature is T“J.ET" . The

total entropy change is given by the sum of the entropy change from processes
i and ii.

Ti; Tis
AS=1/4 C,/TdT +1/4 C,/TdT +
T. Th
Tiii_ T,',','_ TI“_
1/4/ C,/TdT + 1/2/ C,,/TdT+1/4/ C,/TdT
e i Th
[ Ty Ty Ty Tiis Ti;
AS =1/4C, (log 22 +log =2 + log = + 21og =2 + log =2
S /Cp(och+ogTh+och+ ogTii+0gTh>
1 T.+ Ty
AS = -1 c
§=3lerr

four by four
Once again, in this problem due to the symmetric nature of each equilibration

the final temperature for each intermediate step is T3 = Ty = Ty = Ty =
T+Ty _ Tf
5 .



Therefore, the total entropy change is given by the following.
Ty Ty
AS = 1/8/ C,/TdT + 1/8/ C,/TdT +
Te Th

Ty Ty Ty
1/8/ Cp/TdT+1/4/ Cp/TdT-i-l/S/ C,/TdT +
T, Ty Th

Ty

Tf_ - Tf_
1/8/ c,,/TdT+1/2/ C,,/TdT+1/8/ C,/TdT +
Th

T. Ty

Ty Ty Ty
1/8 / C,/TdT + 3/4 / C,/TdT +1/8 / C,/Tdr
T, T; T

(. Ty Tf>
AS =4%1/8C, | log —=— + log —
/ p( g7 tlogg

Tc + Th
AT.T),

AS = %log

2" by 2"
From the previous two cases it is obvious that the entropy change of the
isolated system of blocks for any case with the symmetry of the previous cases

is the same AS = Llog Z=tTx  This is because the general expression is AS =

4T. T,
n T.+Th 9
35 log 75> and the n’s cancel out.




