Thermodynamics of Materials 3.00
Example Problems for Week 2

Example Problem 2.1

A elosed system consisting of an elaslic membrane enclosing o colloidal suspension is
syueezed. The compressive pressure i 10Pa and the volume of the system changea from
100L te BOL. During this process 1J of heat is released. Calewlate the change in internal
energy of the syatem.

Solution 2.1

This is a closed system so0 heat can cross the boundary but matter can’t. The problem
is a straightforward application of the First Law of Thermodynamics. Which states that
the internal energy of a system increases if heat is added to the system and decreases when
work 18 done by the system or dl = d€) — dW. This mathematical statement implies that
heat added to the system is positive and work done by the system is positive. Note: ['ve

used a sign convention that is different from that in Denbigh. The only work is Pd}V" work
so 47 = di — PdV.

dll = d} — dW

dlf = —1J — 10Pa(80L — 100L) 1m"
2 ¢ 10PL

d = —1J + 0027 = 0.098.7

So the internal energy of the system increases by 0,987,

Example Problem 2.2

Two springs, A and B, are attached fo cach other and fo opposite rigid walls separated
bir a distanee L. The point of allachment,z; | is such thal the system of springs is out of
equilibrinm. The two springs have different spring constants, k4 and kp. Assume that the
twe sprivgs maoke an adiabatic system. Calewlate the change in indernal energy and foree
on each spring once the sysfem equilibrates.

Solution 2.2

Figure 1: Initial and final states of adiabatic spring system.

The mechanical energy stored in a spring is given by E = Lk(x — xg)* where = is the
length of the spring and = is the equilibrium free length of the spring. So the total energy



stored in the system of springs is given below where x4y and zp, are the equilibrium
lengths of each free spring.

1 1
E = §I€A(IL'A — IL'A,O)Q + §I€B(1‘B — 1‘370)2

If the length of spring A is x4 and then the length of spring B is L — x 4. The equilibrium
state of the system is the one with the lowest energy. This is equivalent to calculating

dE )
i |z=2, and solving for ;.

1 1
E= §kA(l'A - IL'A,O)2 + §I€B(L — XA — IL‘B,O)2
dE
m|xA:xf =0= k‘A(IL'f - IL‘A’O) - kB(L — Ty — xB,O)
(kA + kB)$f == k'A$A,0 + k‘B(L - l'B,O)
_ katao+kp(L —xpy)
(kA—l-kB)

Note that there is an upper and lower bound on the equilibrium position,z;. Mathemat-
ically, 0 < xy < L. However, each spring has a finite volume and compressibility so the
limits on ;s are closer together in a better approximation.
. . . d
The force on a spring is given by F' = =2 = k(z — xo).
FA = —k‘A(IL'f — xA,O)

karap+kp(L —xpp)

Fy=—k —
A A( (kA+kB) l'A,O)
P _kakp(L — 240 —2Bo)
4 ka+ kg
and
FB = —kB(L — :Uf — a:Byo)
kAl‘A0+kB(L—l'BO)
Fg=—kg(L — ’ — —
B B( (kA+kB) xB,o)
o kakp(L — x40 — xpyo)
B ko + kg

Note that the forces on springs A and B are equal in magnitude but opposite in direction.
We could have found x; using this definition of equilibrium. The mathematics that result
are exactly the same.

Now substitution of the final and initial positions into the energy expressions will yield
the change in internal energy for each spring.

AEy = FEayp—Eay
1 1
AEA = 5/@4(33}0 - JZA,U)2 + 5]@4(:@ — :UA70)2

katao+kp(L —xpy)
(/47,4 + kB)

- xA,o)Q - (% - $A,0)2

1
AEA - 5]?714 (



and

AFEp = FEpjy— Ep;

1 1
ABp = Skp(L—xp — o)’ + Sku(L — 2 — 2,)°
1 kazao+ k(L — xpp) 2 2
AEp = kg |(L — : = - L—wi—
n=gks | (a + ko) ool B )

Note that in general the change in internal energy of spring A is different from that for
spring B. The total change in internal energy of the system of springs is not positive.



