


stored in the system of springs is given below where xA;0 and xB;0 are the equilibrium
lengths of each free spring.
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If the length of spring A is xA and then the length of spring B is L � xA.The equilibrium
state of the system is the one with the lowest energy. This is equivalent to calculating
dE
dxA

jxA=xf and solving for xf .
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Note that there is an upper and lower bound on the equilibrium position,xf . Mathemat-
ically, 0 < xf < L. However, each spring has a �nite volume and compressibility so the
limits on xf are closer together in a better approximation.

The force on a spring is given by F = �dE
dx

= k(x� x0).
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and
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Note that the forces on springs A and B are equal in magnitude but opposite in direction.
We could have found xf using this de�nition of equilibrium. The mathematics that result
are exactly the same.

Now substitution of the �nal and initial positions into the energy expressions will yield
the change in internal energy for each spring.
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and

�EB = EB;f � EB;i
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Note that in general the change in internal energy of spring A is di�erent from that for
spring B. The total change in internal energy of the system of springs is not positive.


