
Introduction to modeling, and Perl

24.964—Fall 2004

Modeling phonological learning

Class 1 (9 Sept 2004)

24.964—Class 1 9 Sept, 2004

Introduction

(Syllabus and mechanics)

� �

� �

* �

24.964—Class 1 9 Sept, 2004

Why learn to model?

Example: describing phonotactics

Tagalog English Polish
[ta] �

[tra] *

[rta] *

24.964—Class 1	 9 Sept, 2004

Why learn to model?

The “popular model”

•	 Children hear what their language sounds like, and they
use their knowledge of existing words to decide about
what’s possible

•	 Tagalog speakers: don’t know any words with [tra], so
reject it as zero probability

•	 English speakers: know both [ta] and [tra] words, but no
[rta]; reject as highly improbable (or impossible)

•	 Polish­learning children: know words of all types, so find
support for accepting all three

24.964—Class 1	 9 Sept, 2004

Why learn to model?

Tjong Kim Sang & Nerbonne (2000) Learning the logic of
simple phonotactics

•	 Took a corpus of existing Dutch words

•	 Model looks at each word, noting what segments can
occur next to one another

◦	 [pra:t]: infers that [pr], [ra:], [a:t] are allowable sequences

•	 Testing whether a new word is possible: does it contain
any two­character sequences that haven’t been seen before?

•	 Model trained on most of the words in the corpus

◦	 A few words set aside for testing (test positives)
◦	 Testing also includes randomly generated words with

illegal sequences (test negatives)

http://odur.let.rug.nl/~nerbonne/papers/tjong-nerbonne2000.pdf
http://odur.let.rug.nl/~nerbonne/papers/tjong-nerbonne2000.pdf

24.964—Class 1 9 Sept, 2004

Why learn to model?

Tjong Kim Sang & Nerbonne (2000)

Simple model
Task % accepted positives % rejected negatives
Orthographic 99.3±0.3 55.7±0.9
Phonetic 99.0±0.5 76.8±0.5

24.964—Class 1	 9 Sept, 2004

Why learn to model?

Tjong Kim Sang & Nerbonne (2000)

•	 Then trained a model, which tried to learn rules about
possible combinations (not just possible two­character
sequences)

24.964—Class 1 9 Sept, 2004

Why learn to model?

Results of baseline model

Simple model
Task % accepted positives % rejected negatives
Orthographic 99.3±0.3 55.7±0.9
Phonetic 99.0±0.5 76.8±0.5

24.964—Class 1 9 Sept, 2004

Why learn to model?

Results of rule­learning model

Simple model
Task % accepted positives % rejected negatives
Orthographic 99.3±0.3 55.7±0.9
Phonetic 99.0±0.5 74.8±0.5

24.964—Class 1	 9 Sept, 2004

Why learn to model?

Tjong Kim Sang & Nerbonne (2000)

•	 Finally, augmented their model to incorporate some notion
of syllable structure

C1 C2 C3 V C4 C5 C6

•	 Can’t have C1 without C2 , C3 without C2 , C1 can’t be a
stop, etc.

24.964—Class 1 9 Sept, 2004

Why learn to model?

Results of augmented model:

Simple model
Task % accepted positives % rejected negatives
Orthographic 98.6±0.3 84.9±0.3
Phonetic 99.0±0.5 91.9±0.3

24.964—Class 1	 9 Sept, 2004

Why learn to model?

Konstantopoulos (2002) Learning Phonotactics Using ILP

•	 Similar task, slightly different model

Model also tries to learn rules about what can come•
before/after what

Primitives % accepted pos % rejected neg # of rules
Segments 99.3% 79.8% 1154
Feature classes 94.2% 92.6% 181
Sonority relations 93.1% 83.2% 11

24.964—Class 1	 9 Sept, 2004

Why learn to model?

Gildea and Jurafsky (1996) Learning Bias and
Phonological­Rule Induction

•	 Attempted to train models to learn simple phonological
rules of English, such as flapping

´t R / V (r) V (flap medially after an unstressed V and ◦ →
an optional r)

•	 All that the rule cares about is stress, possible r’s, and
presence of a following vowel.

•	 Model must learn to ignore everything else.

http://www.colorado.edu/linguistics/jurafsky/cl.pdf
http://www.colorado.edu/linguistics/jurafsky/cl.pdf

24.964—Class 1 9 Sept, 2004

Why learn to model?

Gildea and Jurafsky (1996)

Training items States Error rate
6250 19 2.32%
12500 257 16.40%
25000 141 4.46%
50000 192 3.14%

• Model fails to improve, even after VERY many examples

24.964—Class 1	 9 Sept, 2004

Why learn to model?

Gildea and Jurafsky (1996)

•	 Added bias for segments to remain unaltered by rules (≈
Faithfulness)

24.964—Class 1 9 Sept, 2004

Why learn to model?

Gildea and Jurafsky (1996)

Training items States Error rate
6250 3 0.34%
12500 3 0.14%
25000 3 0.06%
50000 3 0.01%

• Performing optimally even at earliest testing stage

24.964—Class 1	 9 Sept, 2004

Why learn to model?

Albright and Hayes (2003)

•	 Task: learn how to form English past tenses

•	 Approach: examine the changes involved (suffixation,
vowel changes, etc.), and evaluate how reliable/accurate
they are

24.964—Class 1	 9 Sept, 2004

Why learn to model?

Albright and Hayes (2003)

•	 A surprising result: the rule with the best trade­off of
accuracy and generality ⎡	 ⎤

−son
 ⎦∅ → t / ⎣	 +cont

−voi

•	 A failing of the model? Or an empirical discovery?

24.964—Class 1	 9 Sept, 2004

Why learn to model?

•	 “Good analytical hygiene”

•	 Novel evidence for empirical usefulness of theoretical
proposals

•	 Novel evidence for analytical usefulness of theoretical
proposals

•	 Source of novel empirical discoveries

24.964—Class 1 9 Sept, 2004

Introduction to Perl

What does the following program do?

$n=q y$$YVAR;;y;$q=$n=˜y%$N­ZA­M;%_A­Z_%;;print map{eval
join$/,(map{";#"}(2..$_)),qq@\$p=$n@;chr$p+$q}qw &64
93 100 100 103 24 111 103 106 100 92 25 2&

24.964—Class 1	 9 Sept, 2004

Introduction to Perl

What does the following program do?

$n=q y$$YVAR;;y;$q=$n=˜y%$N­ZA­M;%_A­Z_%;;print map{eval
join$/,(map{";#"}(2..$_)),qq@\$p=$n@;chr$p+$q}qw &64
93 100 100 103 24 111 103 106 100 92 25 2&

•	 This may be the kind of thing you imagine when you think
of computer programming

•	 Don’t worry! We won’t be doing anything remotely like
this in this class

24.964—Class 1 9 Sept, 2004

Introduction to Perl

What does the following program do?

print "Hello world!\n";

24.964—Class 1 9 Sept, 2004

Perl trivia

• Stands for Practical Extraction and Report Language

24.964—Class 1 9 Sept, 2004

Perl trivia

• Stands for Practical Extraction and Report Language

• Creator: Larry Wall

◦ Attended grad school in linguistics (UCLA, UC Berkeley)
◦ (Was an aspiring missionary at the time)

24.964—Class 1	 9 Sept, 2004

Introduction to Perl

Basic mechanics:

•	 Perl programs are simply text files, containing lists of
instructions

◦	 You can create them with Notepad, TextEdit, Microsoft
Word, etc. (save as text only)

◦	 (It will save you time and hassle to download and install
one that’s more powerful, and intended for programming—
more on this in a minute)

•	 In order to run them, you call the Perl interpreter

◦	 This is a (free) program, which you may need to install—
more on this in a minute, too

24.964—Class 1 9 Sept, 2004

Get a good text editor

(Notepad/TextEdit/etc. will do the trick, but in the long run
it pays to get something more sophisticated)

• Unix: Emacs, vi, . . .

• Mac: I recommend AlphaX

◦ http://www.maths.mq.edu.au/∼steffen/Alpha/AlphaX/

• Windows: SciTE is good

◦ http://scintilla.sourceforge.net/SciTEDownload.html

http://www.maths.mq.edu.au/~steffen/Alpha/AlphaX/
http://scintilla.sourceforge.net/SciTEDownload.html

24.964—Class 1	 9 Sept, 2004

Getting Perl

•	 Unix, Mac OS X: you have it already, by default

Windows: ActivePerl distribution •

◦	 http://www.activestate.com/Products/ActivePerl/

•	 Older Mac systems: MacPerl

◦	 http://www.ptf.com/macperl/

http://www.activestate.com/Products/ActivePerl/
http://www.ptf.com/macperl/

24.964—Class 1 9 Sept, 2004

Creating and running a program

hello1.pl

print "Hello world!\n";

24.964—Class 1 9 Sept, 2004

Creating and running a program

hello1.pl

print "Hello world!\n";

24.964—Class 1 9 Sept, 2004

Creating and running a program

hello1.pl

print "Hello world!\n";

24.964—Class 1 9 Sept, 2004

Creating and running a program

hello1.pl

print "Hello world!\n";

24.964—Class 1 9 Sept, 2004

Creating and running a program

hello1.pl

print "Hello world!\n";

24.964—Class 1 9 Sept, 2004

Creating and running a program

hello1.pl

print "Hello world!\n";

24.964—Class 1	 9 Sept, 2004

Using variables to store text

hello2.pl

$greeting = "Hello world!";

print "$greeting\n";

•	 The simplest type of variable in Perl is one that holds a
single value (number, bit of text, etc)

Scalar variable: indicated with $ •

24.964—Class 1 9 Sept, 2004

Using variables to store text

Assigning a value to a variable:

$variablename = value;

• Value can be a number, a string, a variable, etc.

◦ $days_in_a_week = 7;
◦ $my_name = "Adam";
◦ $name_of_user = $my_name;

24.964—Class 1 9 Sept, 2004

Using variables to store text

hello2b.pl

$world = "Hello";
$hello = "world!";
print "$world $hello\n";

24.964—Class 1 9 Sept, 2004

Using variables to store text

Another type of variable: arrays

item 1 item 2
 item 3 . . . item n

$greeting = "Hello world!";

print "$greeting\n";

• An array is indicated with @ (@arrayname)

• Individual elements in the array are referred to by their

position (or index: $arrayname[0], $arrayname[1], etc.

24.964—Class 1 9 Sept, 2004

Using variables to store text

hello3.pl

$greeting[0] = "Hello";

$greeting[1] = "world!";

The following two lines do exactly the same thing

print "$greeting[0] $greeting[1]\n";

print "@greeting\n";

24.964—Class 1 9 Sept, 2004

Using variables to store text

Assigning values to an array:

• One technique:

$arrayname[0] = $item1;

$arrayname[1] = $item2;

etc...

• Another technique:

@arrayname = ($item1, $item2, etc...);

24.964—Class 1 9 Sept, 2004

Using variables to store text

hello3b.pl

@greeting = ("Hello", "world");

The following two lines do exactly the same thing

print "$greeting[0] $greeting[1]\n";

print "@greeting\n";

24.964—Class 1 9 Sept, 2004

Manipulating variables
simplemath.pl

$x = 1;

print "The value of \$x is $x\n";

$x = $x + 2;

print "The value of \$x is $x\n";

$x = $x * 2;

print "The value of \$x is $x\n";

$x = $x / 3;

print "The value of \$x is $x\n";

$x = $x ­ 1;

print "The value of \$x is $x\n";

$x++;

print "The value of \$x is $x\n";

$x­­;

print "The value of \$x is $x\n";

24.964—Class 1 9 Sept, 2004

Manipulating variables

One other useful operation: concatenation

$greeting = "Hello" . " " . "world!";

24.964—Class 1 9 Sept, 2004

Using loops

loop1.pl

A for loop from 1 to 10
for ($i = 1; $i < 11; $i++) {

print "$i\n";
}

24.964—Class 1	 9 Sept, 2004

Using loops

for (initial state, condition, operation) { ...}

•	 Here, initial state is for $i to have value of 1

•	 Condition is to keep going as long as $i is less than 11

x < y means x is less than y ◦
x	 <= y means x is less than or equal to y ◦

◦	 Similarly, x > y, x >= y: x greater than (or equal to) y
x == y means x equals y ◦

•	 Each time we run the loop, we add one to $i ($i++)

•	 The stuff to do is between curly braces: { . . . }

24.964—Class 1 9 Sept, 2004

Using loops

loop1.pl

A for loop from 1 to 10

for ($i = 1; $i < 11; $i++) {

print "$i\n";

}

How could we modify this program to do the same thing?

24.964—Class 1 9 Sept, 2004

Using loops to access arrays

hello4.pl

@greeting = ("Hello", "world!");
for ($i = 0; $i <= 1; $i++) {

print "$greeting[$i] ";
}
print "\n";

24.964—Class 1	 9 Sept, 2004

Using loops to access arrays

hello5.pl

@greeting = ("Hello", "world!");

for ($i = 0; $i <= $#greeting; $i++) {

print "$greeting[$i] ";

}

print "\n";

•	 $#arrayname refers to the index of the last element in the
array

24.964—Class 1 9 Sept, 2004

Putting it together
cv.pl

@consonants = (’p’,’t’,’k’,’b’,’d’,’g’,’f’,’s’,’z’,’m’,’n’,
’l’,’r’);

@vowels = (’a’,’e’,’i’,’o’,’u’);

Let’s also keep track of how many words we have generated

$number_of_words = 0;

Loop through consonants

for ($c = 0; $c <= $#consonants; $c++) {

Loop through vowels

for ($v = 0; $v <= $#vowels; $v++) {

Print out this CV combination

print "$consonants[$c]$vowels[$v]\n";

Add one to the number of words

$number_of_words++;

}
}
print "\nGenerated a total of $number_of_words words\n";

24.964—Class 1 9 Sept, 2004

Putting it together

How would you generate words with CVCV structure?

24.964—Class 1 9 Sept, 2004

Putting it together

How would you generate words with CVCV structure?

C1: Loop through all possible consonants
V1: Loop through all possible vowels

C2: Loop through all possible consonants
V2: Loop through all possible consonants

print C1V1C2V2
End V2 loop

End C2 loop
End V1 loop

End C1 loop

24.964—Class 1 9 Sept, 2004

Putting it together

cvcv.pl

@cons = (’p’,’t’,’k’,’b’,’d’,’g’,’f’,’s’,’z’,’m’,’n’,’l’,’r’);

@vow = (’a’,’e’,’i’,’o’,’u’);

$number_of_words = 0;

for ($c1 = 0; $c1 <= $#cons; $c1++) {

for ($v1 = 0; $v1 <= $#vow; $v1++) {

for ($c2 = 0; $c2<= $#cons; $c2++) {

for ($v2 = 0; $v2<= $#vo; $v2++) {
print "$cons[$c1]$vow[$v1]$cons[$c2]$vow[$v2]\n";
Add one to the number of words
$number_of_words++;

}

}

}
}
print "\nGenerated $number_of_words legal words\n";

24.964—Class 1 9 Sept, 2004

Checking conditions

Task: filter out CVCV words where C1=C2

if (condition) { ...}

$x == $y x equals y (numeric)

$x != $y x doesn’t equal y (numeric)

$x eq $y x equals y (strings)

$x ne $y x doesn’t equal y (strings)

(Also $x > $y, $x < $y, $x >= $y, $x <= $y for numbers)

24.964—Class 1	 9 Sept, 2004

Checking conditions

Other control structures:

•	 if (condition) { ...}

•	 if (condition) { ...}
else { ...}

•	 if (condition) { ...}
elsif (condition) { ...}
else { ...}

•	 unless (condition) { ...}

(We’ll see more later)

24.964—Class 1 9 Sept, 2004

Checking conditions
cvcv2.pl

@cons = (’p’,’t’,’k’,’b’,’d’,’g’,’f’,’s’,’z’,’m’,’n’,’l’,’r’);

@vow = (’a’,’e’,’i’,’o’,’u’);

$number_of_words = 0;

for ($c1 = 0; $c1 <= $#cons; $c1++) {

for ($v1 = 0; $v1 <= $#vow; $v1++) {
for ($c2 = 0; $c2<= $#cons; $c2++) {

for ($v2 = 0; $v2<= $#vow; $v2++) {
if ($c1 eq $c2) {

print "*$cons[$c1]$vow[$v1]$cons[$c2]$vow[$v2]\n";
} else {

print "$cons[$c1]$vow[$v1]$cons[$c2]$vow[$v2]\n";
Add one to the number of words
$number_of_words++;

}

}

}

}

}
print "\nGenerated a total of $number_of_words words\n";

24.964—Class 1 9 Sept, 2004

Checking conditions

cvcv2b.pl

@cons = (’p’,’t’,’k’,’b’,’d’,’g’,’f’,’s’,’z’,’m’,’n’,’l’,’r’);

@vow = (’a’,’e’,’i’,’o’,’u’);

$number_of_words = 0;

for ($c1 = 0; $c1 <= $#cons; $c1++) {

for ($v1 = 0; $v1 <= $#vow; $v1++) {

for ($c2 = 0; $c2<= $#cons; $c2++) {

for ($v2 = 0; $v2<= $#vow; $v2++) {

if ($c1 ne $c2) {

print "$cons[$c1]$vow[$v1]$cons[$c2]$vow[$v2]\n";
Add one to the number of words
$number_of_words++;

}

}

}

}

}
print "\nGenerated a total of $number_of_words words\n";

24.964—Class 1	 9 Sept, 2004

Summary so far

We have learned the Perl syntax for:

•	 Storing and accessing values in variables (scalars, arrays)

•	 Using loops to actions repeatedly

•	 Checking values, and performing actions based on the
result

24.964—Class 1	 9 Sept, 2004

Pattern matching

Strategy used in cvcv2.pl for detecting OCP violation:

•	 When constructing CVCV string, compare current C1 and
C2

• If identical, don’t output the string

Another plausible strategy:

•	 Construct the current CVCV string

•	 Examine results, looking for Ci . . . Ci sequence (that is,
identical C’s separated by at least a vowel)

•	 If found, don’t output the string

24.964—Class 1 9 Sept, 2004

Pattern matching

Looking for a string within another string:

if ($mystring =~ m/searchstring/) { ... }

Or, simply:

if ($mystring =~ /searchstring/) { ... }

24.964—Class 1	 9 Sept, 2004

Pattern matching

A few things to learn as you need them:

•	 [ab] means “either a or b” (a, b); this can be expanded, so
[abc] = either a, b, or c, etc...

•	 [^a] means “anything other than a”; [^ab] means “anything
other than an a or a b”, etc. (set negation)

•	 a* means “any number of a’s (from 0 to infinity)” (nothing,
a, aa, aaa, aaaa, aaaaa, ...)

•	 a+ means “one or more a’s” (a, aa, aaa, aaaa, aaaaa, ...)

24.964—Class 1	 9 Sept, 2004

•	 ab+ means “an a, followed by one or more b’s” (ab, abb,
abbb, abbbb, ...)

•	 (ab)+ means “one or more consecutive occurrences of ab”
(ab, abab, ababab, abababab, ...)

•	 a? means “an optional a”

•	 ^a means “an a at the beginning of the string”

•	 a$ means “an a at the end of the string”

•	 . (a period) means “any character”

24.964—Class 1 9 Sept, 2004

Pattern matching
patternmatch.pl

if ("blah" =~ /a/) {
print ’/a/’ . "\n";

}
if ("blah" =~ /^a/) {

print ’/^a/’ . "\n";
}
if ("blah" =~ /ba/) {

print ’/ba/’ . "\n";
}
if ("blah" =~ /b.a/) {

print ’/b.a/’ . "\n";
}
if ("blah" =~ /[a­h]*/) {

print ’/[a­h]*/’ . "\n";
}
if ("blah" =~ /^[a­h]*$/) {

print ’/^[a­h]*$/’ . "\n";
}
if ("blah" =~ /[a­m]*/) {

print ’/[a­m]*/’ . "\n";

24.964—Class 1 9 Sept, 2004

}
if ("blah" =~ /^[a­m]*$/) {

print ’/^[a­m]*$/’ . "\n";
}

24.964—Class 1 9 Sept, 2004

Pattern matching
Reminder: cvcv2.pl

@cons = (’p’,’t’,’k’,’b’,’d’,’g’,’f’,’s’,’z’,’m’,’n’,’l’,’r’);

@vow = (’a’,’e’,’i’,’o’,’u’);

$number_of_words = 0;

for ($c1 = 0; $c1 <= $#cons; $c1++) {

for ($v1 = 0; $v1 <= $#vow; $v1++) {
for ($c2 = 0; $c2<= $#cons; $c2++) {

for ($v2 = 0; $v2<= $#vow; $v2++) {
if ($c1 eq $c2) {

print "*$cons[$c1]$vow[$v1]$cons[$c2]$vow[$v2]\n";
} else {

print "$cons[$c1]$vow[$v1]$cons[$c2]$vow[$v2]\n";
Add one to the number of words
$number_of_words++;

}

}

}

}

}
print "\nGenerated a total of $number_of_words words\n";

24.964—Class 1 9 Sept, 2004

Pattern matching

cvcv3.pl

@cons = (’p’,’t’,’k’,’b’,’d’,’g’,’f’,’s’,’z’,’m’,’n’,’l’,’r’);

@vow = (’a’,’e’,’i’,’o’,’u’);

$number_of_words = 0;

for ($c1 = 0; $c1 <= $#cons; $c1++) {

for ($v1 = 0; $v1 <= $#vow; $v1++) {

for ($c2 = 0; $c2<= $#cons; $c2++) {

for ($v2 = 0; $v2<= $#vow; $v2++) {
$word = "$cons[$c1]$vow[$v1]$cons[$c2]$vow[$v2]";
unless ($word =~ /$cons[$c1].$cons[$c1]/) {

print "$word\n";
}

}
}

}
}

24.964—Class 1 9 Sept, 2004

Pattern matching

cvcv4.pl

@cons = (’p’,’t’,’k’,’b’,’d’,’g’,’f’,’s’,’z’,’m’,’n’,’l’,’r’);

@vow = (’a’,’e’,’i’,’o’,’u’);

$number_of_words = 0;

for ($c1 = 0; $c1 <= $#cons; $c1++) {

for ($v1 = 0; $v1 <= $#vow; $v1++) {

for ($c2 = 0; $c2<= $#cons; $c2++) {

for ($v2 = 0; $v2<= $#vow; $v2++) {
$word = "$cons[$c1]$vow[$v1]$cons[$c2]$vow[$v2]";
if ($word =~ /$cons[$c1].$cons[$c1]/) {

print "$word\tC1=C2\n";
} elsif ($word =~ /$vowels[$v1].$vowels[$v1]/) {

print "$word\tV1=V2\n";
} elsif ($word =~ /[pbmf].[pbmf]/) {

print "$word\tTwo labials\n";
} elsif ($word =~ /[iu]$/) {

print "$word\tFinal high vowel\n";

24.964—Class 1 9 Sept, 2004

} else { print "$word\n"; }
}

}
}

}

24.964—Class 1 9 Sept, 2004

Dealing with files

readfile1.pl

#Read a file, print its line to the screen.

$input_file = "sample.txt";

open (INFILE, $input_file) or die "The file $input_file could not be found\n";

Loop, continuing as long as lines can be read from the file

while ($line = <INFILE>)

{

$line_count++;
print "$line_count $line";

}

close INFILE;

24.964—Class 1 9 Sept, 2004

Dealing with files

readfile2.pl
#Read a file, print its line to the screen.

$input_file = "sample.txt";

$output_file = "sample­output.txt";

open (INFILE, $input_file) or die "The file $input_file couldn’t be found\n";

open (OUTFILE, ">$output_file") or die "The file $output_file couldn’t be written\n";

Loop, continuing as long as a line can be read successfully from the file

while ($line = <INFILE>)

{

$line_count++;
printf OUTFILE "$line_count $line";

}

close INFILE;
close OUTFILE;

24.964—Class 1 9 Sept, 2004

What would you think this program should do?
readfile3.pl

$input_file = "sample.txt";

$output_file = "sample­output.txt";

open (INFILE, $input_file) or die "The file $input_file couldn’t be found\n";

open (OUTFILE, ">$output_file") or die "The file $output_file couldn’t be written\n";

Loop, continuing as long as a line can be read successfully from the file

while ($line = <INFILE>)

{

$count = 0;

$lines++;

while ($line =~ m/[aeiou]/) {

$count++;

}

print "Line $lines: $count vowels\n";

}

close INFILE;
close OUTFILE;

24.964—Class 1 9 Sept, 2004

What would you think this program should do?
readfile3b.pl

$input_file = "sample.txt";

$output_file = "sample­output.txt";

open (INFILE, $input_file) or die "The file $input_file couldn’t be found\n";

open (OUTFILE, ">$output_file") or die "The file $output_file couldn’t be written\n";

Loop, continuing as long as a line can be read successfully from the file

while ($line = <INFILE>)

{

$count = 0;

$lines++;

while ($line =~ m/[aeiou]/g) {

$count++;

}

print "Line $lines: $count vowels\n";

}

close INFILE;
close OUTFILE;

24.964—Class 1 9 Sept, 2004

Some more useful operations

chomp($x) removes newline (\n) from end of line
lc($x) converts $x to lower case
@fields = split(/\t/, $x) splits string $x into an array, using tab as a delimiter
($var1, $var2) = split(/\t/, $x) assigns split fields to different variables
$x =~ s/search/replace/ searches $x for search and replaces with replace (1st instance only)
$x =~ s/search/replace/g searches $x for search and replaces with replace (all instances)

24.964—Class 1 9 Sept, 2004

Exercise

What would be some other ways to count the number of
vowels in each line?

24.964—Class 1 9 Sept, 2004

Another exercise

Read in a file of arithmetic statements, and check to see
whether they are correct.

x OPERATION y = z

(checkmath.pl)

24.964—Class 1 9 Sept, 2004

Last exercise for the day

Converting romanized Japanese text from the “official”
Kunrei­shiki (Manbushō) romanization scheme to the
more commonly used Hepburn scheme.

Details at: http://en.wikipedia.org/wiki/Romaji

http://en.wikipedia.org/wiki/Romaji

24.964—Class 1 9 Sept, 2004

Last exercise for the day

$input_file = "Japanese­ToConvert.txt";
open (INFILE, $input_file) or die "Warning! Can’t open input file: $!\n";

while ($line = <INFILE>) {
Crucial rule ordering: this needs to go first
$line =~ s/hu/fu/g;

The major difference is use of <y> after t,s,z

$line =~ s/ty/ch/g;

$line =~ s/sy/sh/g;

$line =~ s/zy/j/g;

Also, palatalization before i

$line =~ s/ti/chi/g;

$line =~ s/si/shi/g;

$line =~ s/zi/ji/g;

And assibilation of t before u

$line =~ s/tu/tsu/g;

print "$line";
}

24.964—Class 1 9 Sept, 2004

Assignment

Grapheme to phoneme conversion, for Italian

24.964—Class 1 9 Sept, 2004

Resources for learning Perl

On­line documentation: •

◦ http://www.perl.com/pub/q/documentation

Other on­line resources
•

◦ http://learn.perl.org

• Wall, Christiansen & Orwant: Programming Perl (3rd ed.)

◦ Comprehensive, readable; somewhat expensive ($50)

http://www.perl.com/pub/q/documentation
http://perldoc.com
http://learn.perl.org
http://www.amazon.com/gp/reader/0596000278/ref=sib_dp_ln/002-9906233-4152825

