
T his problem set is handed out a day after sixth lecture(L E C#6) and due two weeks 
later. 

G oals 

T his assignment is meant to teach you about methods of reasoning and learning 
under uncertainty. T he main part focuses on Bayes Networks, a graphical formal-
ism that represents probabilistic relationships among random variables. T he paper 
is broken down into 4 sections: 

B ackground: Summary of the basic notions and de� nitions of B ayesian networks. 

R epresentation: A problem requiring the use of B ayesian networks to represent 
expert medical knowledge. 

R easoning: A problem requiring the use of B ayesian networks to reason under 
uncertainty. 

L earning: A problem requiring the use of B ayesian networks to learn from a 
database. 

B ackground 

Much of what we know about the world is known with various degrees of certainty. 
A lthough many different numerical models have been proposed for representing 
this uncertainty, many researchers today believe that probability theory—the most 
extensively studied uncertainty calculus—is an appropriate basis for building com­
puterized reasoning systems. 

M athematical Preliminar ies 

We take the world of interest to consist of a set of random variables, X = f X 1; X 2; : : : ; X n g.€
E ach of the X i can take on one of a discrete set of values, f x i 1; x i 2; : : : ; x i ki g.1€

E ach possible combination of assignments of values to each of the variables repre­€
sents a possible state of this world. T here are 

Q n
i = 1 ki such states. T his is clearly€

1Formulations using continuous variables are also possible, but we will not pursue them here. A 
continuous variable can, of course, be approximated by a large number of discrete values. 
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exponential in the number of variables; for example, if each variable is binary, all 
of the ki = 2 and the number of states is 2n . Each state may be identified with 
the particular values that it assigns to each variable. We might have, for example, 
S12 = {X1 = a,X2 = e, . . . , Xn = b}. 

A probability function, P , assigns a probability to each of these possible states. 
The probability for each state, P (Si), is the joint probability of that particular 
assignment of values to the variables. All states are distinct, and they exhaustively 
enumerate the possibilities; therefore, 

n 
i=1 

ki 

P (Sj ) = 1.0 
j=1 

We will often be interested in the probability not of individual states, but of certain 
combinations of particular variables taking on particular values. For instance, we 
may be interested in the probability that {X3 = a,X5 = b}. In such cases, we 
wish to treat other variables as “don’t cares.” We call such a partial description 
of the world a circumstance,2 C, and the variables that have values assigned the 
instantiation-set of the circumstance, I(C). The probability of a circumstance C 
can be computed by summing the probabilities of all states that assign the same 
values to the variables in the instantiation set I(C) as C. If we re-order variables 
X so that the first m are the instantiation set of C, then (in a shorthand notation): 

P (C) = . . . P (S). 
Xm+1 Xn 

For example, if the world consists of four binary variables, W , X , Y and Z, then 
the circumstance {X = true, Z = false} is given by 

P ({X = true, Z = false}) = P ({W = u, X = true, Y = v, Z = false}) 
u∈{true,false} v∈{true,false} 

The computational difficulty of calculating the probability of a circumstance comes 
precisely from the need to sum over a possibly vast number of states. The num­
ber of such states to sum over is exponential in the number of “don’t cares” in a 
circumstance. 

Defining P for each state of the world is a rather tedious and counter-intuitive 
way to describe probabilities in the world, although the ability to assign an expo­
nentially large number of independent probabilities would allow any probability 

2“Circumstance” is not a commonly-used term for partial descriptions of the world. People use 
terms such as “partially-specified state” and other equally unsatisfying terms. 
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distribution to be described. It might happen that the world really is so complex 
that only such an exhaustive enumeration of the probability of each state is ad-
equate, but fortunately many variables appear to be independent. For example, 
in medical diagnosis, the probability that you get a strep infection is essentially 
independent of the probability that you catch valley fever (a fungal infection of 
the lungs prevalent in California agricultural areas). Formally, this means that 
P (strep, vf) = P (strep)P (vf). When two variables both depend on the same 
set of variables but not directly on each other, they are conditionally indepen­
dent. For example, if an infection causes both a fever and diarrhea, but there is no 
other correlation between these symptoms, then P (fever, diarrhea|infection) = 
P (fever|infection)P (diarrhea|infection). 

The independencies among variables in a domain support a convenient graphical 
notation, called a Bayes network. In it, each variable is a node, and each proba­
bilistic dependency is drawn as a directed arc to a dependent node from the node 
it depends on. This notion of probabilistic dependency does not necessarily cor­
respond to what we think of as causal dependency, but it is often convenient to 
identify them. When there is no directed arc from one variable to another, then we 
say that the second does not depend on the first. 

The probability of a state is a product over all variables of the probability that the 
variable takes on its particular value (in that state) given that its parents take on 
their particular values: 

P (X1 = v1, . . . , Xn = vn) = P (Xi|π(Xi)) 
i=1,...,n 

The right hand side is an abbreviation for 

P (Xi|π(Xi)) = P (Xi = vi|Xj = vj , . . . , Xl = vl) 
i=1,...,n i=1,...,n 

where π(X) = {Xj , . . . , Xl). As described above, to find the probability of a 
circumstance, we must still sum over all of the states that are consistent with the 
circumstance—i.e., a number of states exponential in the number of “don’t cares.” 

Software 

The program to use for the exercises is Bayesware Discoverer. A free Student 
Edition is available from http://bayesware.com. The data for the last exercise are 
available from the course homepage, as well the related paper by Wolberg et al. 
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Representation 

Question 1. Your expert supplies you with the following assessment: ”I think 
that disease D1 causes symptoms S1 and, together with disease D2, causes symp­
tom S2. 80% of patients affected by disease D1 will manifest symptom S1, which 
is present in the 10% of the patients without disease D1. D1 and D2 cause the 
occurrence of symptom S2 in 60% of cases, when only D1 is present S2 occur in 
the 70% of patients, when only D2 is present S2 occur in the 80% of patients, when 
neither D1 or D2 occur symptom S2 occurs in the 10%. Disease D1 occurs in the 
20% of the population, while disease D2 occurs in the 10%. 

1. Draw the network capturing the description. 

2. What kind of graph is this and why? 

3.	 Assume that the variables can take two values, 1 for present, 0 for absent. 
Write the conditional probability tables associated to each dependency in the 
network. 

4.	 Write down the formula to calculate the joint probability distribution induced 
by the network. 

5. Using these table, calculate the marginal probability p(S1 = 1). 

Reasoning 

Question 2. Consider the network in Figure 1. 

1. How are termed the networks with this kind of structure. 

2. List the assumptions of conditional independence encoded by this network. 

3. Assume that the distributions of the network as are as follows: 
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Figure 1: B ayesian network for R easoning exercise. 

(a)€ L ist the probability distributions of each symptom given that the Dis­
ease is True. 

(b)€ Compute the posterior probability distribution of the Disease variable 
given that Symptom1 is True, Symptom2 is True and Symptom 3 is 
False. 

(c)€ Has any of the symptoms enough evidential power to make True the 
Disease variable by itself, or you always need a combination of vari­
ables to make positive your diagnosis? 

L earning 

Question 3. Consider the database Wisconsin B reast Cancer. T he database is as 
following: 
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1. Number of Instances: 699 (as of 15 July 1992) 

2. Number of Attributes: 10 plus the class attribute 

3. Attribute Information: (class attribute has been moved to last column) 
# Attribute 
1. Sample code number 
2. Clump Thickness 
3. Uniformity of Cell Size 
4. Uniformity of Cell Shape 
5. Marginal Adhesion 
6. Single Epithelial Cell Size 
7. Bare Nuclei 
8. Bland Chromatin 
9. Normal Nucleoli 
10. Mitoses 
11. Class: 

Domain

id number

1 - 10

1 - 10

1 - 10

1 - 10

1 - 10

1 - 10

1 - 10

1 - 10

1 - 10

(2 for benign, 4 for malignant)


The original description of the database is in: 

Wolberg, W. H., & Mangasarian, O. L. (1990). Multisurface method of pattern 
separation for medical diagnosis applied to breast cytology. In Proceedings of the 
National Academy of Sciences, 87, 9193–9196. 

Assess whether the conclusions of the paper are consistent with the structure of the 
learned 

1. Learn the Bayesian network from the database. 

2. Encode the model suggested by the original paper as a Bayesian network. 

3. List the differences between the two models, if any. 

4.	 How important are these differences and how they change the predictive 
power of the model, i.e. the ability to predict the malignancy of the tumor 
given the evidence. hint: Try to propagate different instances of the symp­
tom variables and assess how different are the posterior distributions of the 
variable Class. 
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