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Some Multivariate Methods


Functional and Effective Connectivity 

PCA 

ICA 

Granger Causality 
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Connectivity, Correlation and Association


Functional vs Effective Connectivity


Causality vs Association
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Brain Networks: Functional Connectivity


Brain structures as nodes in network. 

White matter tracts as (undirected) links connecting 
these nodes. 

We would like to determine which are important

connections among the nodes.


Statistical Concepts: correlation, partial correlation,

coherence, partial coherence


Some Statistical Methods: 

For determining the links: correlation analysis, 
partial correlation analysis 
For determining the nodes: Neuroscience theory

(a-priori), or PCA, ICA, and clustering methods.


– p. 



Brain Networks: Effective Connectivity


Brain structures as nodes in network. 

White matter tracts as (directed) links connecting these 
nodes. 

We would like to determine which are important causal 
connections among the nodes. 

Some Statistical Methods: 

For determining the links: SEM, DCM, Granger 
Causality 

For determining the nodes: same as for functional 
connectivity. 

– p. 



Association vs. Causality


Causality: Predictability according to a law or set of laws. 

Association: Occurring together, with or without a causal 
relation (If A and B are associated, then perhaps A 

causes B, B causes A, or maybe C drives both A and B.) 

Methods for causal inference are invariably dependent on 
model assumptions. 

definitive answers require a combination of various kinds 
of evidence. 

– p. 



Principal Components Analysis (PCA)


Introduction via a Simple Example 
PCs and loadings 
Interpretation in terms of eigenvectors and 
eigenvalues of the covariance or correlation matrix 
Relationship to the Singular Value Decomposition 
(SVD) of the data matrix. 

PCA for fMRI 
Why this is different from most “textbook” PCA.

Duality of spatial and temporal PCA 
Expressions for PCS and loadings in terms of 
eigenvectors and eigenvalues 
Some statistical inference 

– p. 



Turtle Shells: An Example of a PCA 
Males (Xm), 24 turtles by 3 variables 

Gender Length Width Height

1 Male 93 74 37


. . . . .


. . . . .


2 Male 94 78 35


24 Male 135 106 47


Females (Xf ), 24 turtles by 3 variables 

Gender Length Width Height

25 Female 98 81 38


. . . . .


. . . . .


26 Female 103 84 38


48 Female 177 132 67


Let X̃m and X̃f denote Xm and Xf , respectively, after 
centering. – p. 



Pairwise Plot of Variables


Blue plot character indicate males; red plot character 
indicates females. 
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Covariance and Correlation Matrices 
Covariance matrix (all turtles) 

Length Width Height 
Length 419 254 166 
Width 254 161 102 
Height 166 102 70 

Correlation matrix (all turtles) 

Length Width Height 
Length 1.00 0.98 0.96 
Width 0.98 1.00 0.96 
Height 0.96 0.96 1.00 

Cov (x, y)
Corr. = 

SD (x)SD (y) 
– p. 1 
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Basic Idea of PCA 

Rotation of coordinates. First, find direction of greatest

variability in the multidimensional cloud of data points.


Now iterate: let i + 1 st axis in rotated system be the

direction of greatest variability orthogonal to all i

previously determined directions.


If X is the column-centered case-by-variables data

matrix, then the rotation matrix is the (orthogonal)

matrix of eigenvectors of XT X. This is usually called

the loadings matrix.


The principal components (PCs, also called scores) are 
the coordinates of the data points with respect to the 
new coordinate system. 

The PCs are uncorrelated, with variances equal to the 
eigenvalues of the covariance matrix (i.e., XT X/(n− 1)). 

– p. 1 
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PCA for Turtle Data: Loadings


Loading matrix for males (Am) 

PC1 PC2 PC3 
Length 0.84 -0.49 -0.24 
Width 0.49 0.87 -0.05 
Height 0.23 -0.08 0.97 

Loading matrix for females (Af ) 

PC1 PC2 PC3 
Length 0.81 -0.55 0.21 
Width 0.50 0.83 0.25 
Height 0.31 0.10 -0.95 

Note: PC2 and PC3 might help us discriminate 
genders. 

– p. 1 
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PCA for Turtles: PCs


Means for Males


Length = 113; Width = 88; Height = 41 

Principal components for first male turtle: 

 T     

 

0.84 −0.49 −0.24 
  

93 − 113 
  

−25.0 
 

 

 

0.49 0.87 −0.05  

 

 

 

74 − 74  

 

=  

 

−2.2  

 

0.23 −0.08 0.97 37 − 41 1.9 

Matrix equation for all male turtle data. Recall that X̃m is 
the centered data matrix for males: 

X̃mAm = Pm 

– p. 1 
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Pairwise Plot of PCs


Blue plot character indicate males; red plot character 
indicates females. 
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PCA on Correlations


In addition to centering the columns of the data matrix, 
one can also scale these columns to have unit variance, 
prior to performing the PCA. 

This is equivalent to doing PCA on the correlation 
matrix, rather than the covariance matrix. 

It is often desirable to perform PCA on correlations 
rather than covariances, and it is nearly essential to do 
so when some of the variables are on different scales. 

– p. 1 
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PCA for fMRI: References


Following Andersen et al., Magnetic Resonance in 
Imaging, 17(6), 785-815, 1999. particularly pages 
798-799. See also Bullmore et al., NeuroImage, 4, 
16-33, 1996, for an applied article which clearly 
presents the basic methodological ideas. 

– p. 1 
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How PCA in fMRI is Different


Usual PCA scenario: Rows of Xn×p are a sample of 
size n of a p-variate Gaussian. 

In fMRI, Xn×p is a matrix of time × space, hence a 
sample of size one from a np-dimensional Gaussian. 

(Actually, one can also cast the X matrix for “typical” 
non-fMRI PCAs in this form, but the covariance matrix 
will be block diagonal with the p× p covariance matrix of 
the column variables repeated n times on the diagonal, 
because of the independent cases). 

– p. 1 
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Covariance Matrices


XT X, p × p, is the (singular) spatial covariance matrix 

XXT , n n, is the temporal covariance matrix ×
Duality: We can switch the roles of n and p (that is, work 
with XT in the role of X, in which case the voxels are 
regarded as “cases” and time points as “variables”.) 

– p. 1 
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Eigenvalues and Eigenvectors


Eigenvalues of XXT (temporal), and (nonzero) 
eigenvalues XT X (spatial): 

λ1 > λ2 > λ3 > . . . > λn 

Eigenvectors {wk} (spatial, p × 1), and {uk} (temporal, 
n × 1): 

XT Xwk = λkwk


XXT uk = λkuk


– p. 1 



0

� � 

�


Decomposition of Variance


Let σx
2 

i 
be the variance of xi, the ith row of X, i.e., the 

variance of image at the ith time point. Then 

n n 

σx
2 

i 
= λi = tr (XXT ) 

i=1 i=1 

So the variance is preserved by the PCA. 

Hence, the normalized eigenvalues 

λk
τk ≡ 
λii


can be interpreted as the proportion of variance 
attributable to the kth PCA. 

– p. 2 
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Spatial-Temporal Duality


The products {Xwk} yields the scores (PCs) for a 
decomposition in terms of the loadings {wk

T }; 

The products {XT uk} Yoda’s the scores for a 
decomposition in terms of the loadings {uk}. 

Since 

uk = Xwk/
√

λk, and wk = XT uk/
√

λk 

– p. 2 
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Spatial-Temporal Duality, Continued 

Thus the loadings of the eigenimages of the spatial 
covariance matrix XT X are proportional to the scores 
for the dual analysis with time points as variables, and 
vice versa. 

Since n << p, it is computationally far more efficient to

compute the eigenvectors of the n n matrix XXT . We
×
can then use the duality to easily get the p-dimensional 
eigenvectors of XT X. 

– p. 2 
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Decomposition of X


Finally, we can use the SVD (interpreted via PCA) to

express the space-time matrix X as a sum of p n n
×
rank-one matrices, each determined by a spatial 
eigenimage wi and a temporal eigenvector ui, weighted 
by decreasing eigenvalues λi: 

n 
TX = 

√
λiuiwi 

i=1 

Each term is the outer product of an eigenimage with a 
univariate timecourse. One can hope that the first few 
eigenimages are interpretable, and that they explain 
most of the variability in X. 

– p. 2 
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Schematic of Decomposition


(Truncating the sum at q ≤ n terms provides the closest 
least-squares rank−q approximation to X.) 

– p. 2 
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Statistical Inference


For the first time, we now use the Gaussian assumption 
of our data model, and not just the covariance matrices. 
We distinguish between estimates (e.g., λ̂k) and their 
corresponding population values. 

Var (λ̂k) ≈ 2λ2/(p − 1) k

Var (ûk) ≈ λk λj 
2 ukuk

T 

p − 1 
j = 1 

(λk − λj )

j = k 

Asymptotically valid for large n and p. Substitute 
estimates for population values. 

Var (ŵk) is of the same form as above, with obvious 
changes. 

– p. 2 
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How Many PCs are different from noise?


There is an extensive literature on this topic. 

Andersen et al. reference W.G. Mallows, Latent vectors 
of random symmetric matrices, Biometrika, 48, 
133-149, 1960. 

In practice, one often empirically keeps a “few” 
eigenimages, such that a reasonably large proportion of 
the variance is explained, and for which the networks 
indicated by the images have reasonable 
interpretations. 

Replication over subjects is more convincing than any 
formal statistical test, since the tests are asymptotically 
valid, and even then only when the Gaussian 
assumption is satisfied. 

– p. 2 
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How Many PCs: Common Approaches


Plot the eigenvalues in decreasing order (a scree plot, 
and look for a break (“knee”), with the eigenvalues to 
the right of the knee being very small. 

Retain eigenvalues greater than the average. (Recall 
that the eigenvalues are the variances of the PCs). 

Formally test for the smallest eigenvalue equal to zero, 
then the last two eigenvalues equal to zero, etc., until 
the null hypothesis is rejected. This tends to retain more 
components than other approaches, in part because 
the tests are not independent. 

– p. 2 
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Why do PCA?


The first few components often account for most of the 
variability. We can keep only the components with 
“large” variances, that is, PCA can be used for 
dimension reduction. 

The loadings for at least some of the PCs might be 
interpretable, (e.g., first PC above might correspond 
roughly to the size of the turtle shell, or the first few 
eigenimages might correspond to neural networks 
which seem sensible given the experiment). 

– p. 2 
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Independent Components Analysis (ICA)


Correlation vs. Independence 

The blind-source separation problem 

A simple example with two components 

The importance of NonGausianity 

The central limit theorem 

Kurtosis 

Negentropy 

Preprocessing 

Probabilistic ICA 

Comparison with PCA 

– p. 2 
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Correlation


If one plots observations of two random variables in a 
2D scatterplot, then correlation measures the extent to 
which these points fall along a straight line. 

If X and Y are random variables, with expected values 
E(X) and E(Y ), then the correlation ρ is defined as 

E[(X − E(X))(Y − E(Y ))]

ρ = � � 

E(X − E(X))2 E(Y − E(Y ))2 

The sample form of this equation is 

i (xi − x̄)(yi − ȳ) 
r = �

� 
�

� 

i(xi − x̄)2 
i(yi − ȳ)2 

The numerator is the covariance, and the denominator 
is the product of standard deviations. – p. 3 
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Uncorrelated Gaussians are Independent
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Uncorrelated Non-Gaussians can be Dependent


145 Bivariate Gaussians 
Selected from Previous Sample 
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ICA: Blind Source Separation


Imagine that there are n time-varying sources si(t). 

We cannot directly observe the si; instead we observe 
linear combinations 

xi(t) = ai1s1(t) + ai2s2(t) + . . . + ainsn(t),


or, in matrix form 
X = AS


(Note, by the way, that there is no error term above.) 

If the si(t) are independent at each t, then one can, in 
principle, determine the si uniquely up to a multiplicative 
constant. 

– p. 3 
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Example: Hyvärinen and Oja (2000) 

Two independent signals uniformly distributed on 
[−

√
3,
√

3]: 

si ∼ U(−
√

3,
√

3), 

for i = 1, 2. 

We observe the following pair of dependent random 
variables, which is a linear mixture of the si: 

x1 2 3 s1 
= 

x2 2 1 s2 

– p. 3 
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Example: Observed Mixture


Mixture of Uniform Sources 

−4 −2 0 2 4


X1


– p. 3




7

The Central Limit Theorem


Averages of random variables tend to be more 
Gaussian then the averaged components 

Roll of a fair Die 
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The Basic Idea of ICA


A linear combination of the xis is necessarily also a 
linear combination of the sis: 

y = w T x = w T (As) ≡ z T s


We want to find a vector z for which y is as 
non-Gaussian as possible. 

There are 2n local solutions, equal to ±si(t), for 
i = 1, . . . , n. 

If two or more of the si are Gaussian, then the sources 
cannot be found, since any linear combination of 
Gaussians is also Gaussian. 

– p. 3 
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NonGaussianity Criteria: Kurtosis 

Kurtosis is the fourth central moment. The fourth 
moment is equal to 3 for Gaussians, leas than 3 for 
densities which peak near the center (leptokurtic, 
sub-Gaussian), and greater than 3 for densities flat near 
the center (platykurtic, super-Gaussian). 

Assume x and y have variance 1. Kurtosis is 

κ(x) = (xi − x̄)4 − 3

i 

Kurtosis is additive: 

κ(c1x + c2y) = c1

4κ(x) + c2

4κ(y)


Kurtosis is computationally simple, but highly sensitive 
to outliers. 

– p. 3 



NonGaussianity Criteria: Negentropy

Entropy, H(·), measures the amount of information in a
random variable; the more “random” (i.e.,
unpredictable), the higher the entropy:

H(Y ) Pr(Y = ai) log[Pr(Y = ai)],≡ −
∑

i

summed (or integrated) over all values in the support of
Y .

Among all random variables with the same variance,
the Gaussian has the highest entropy.

Let Z be Gaussian, and Y any other random variable
with the same variance as Z. Negentropy is defined as
follows

J(Y ) ≡ H(Z) − H(Y )

Negentropy is thus always non-negative.
– p. 40



1

Preprocessing


Since ICA does not make use of covariances, it makes 
sense computationally to first center and pre-whiten the 
data. 

If this is done, then the mixing matrix A (analogous to 
the “eigentimecourses” in PCA) will be orthogonal. 

Thus, one might consider doing PCA first, then 
whitening (and thus discarding the covariance 
information on which PCA is based), and following with 
ICA. 

– p. 4 
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Probabilistic ICA (MELODIC)


In order to avoid overfitting, and also to be able to

probabilistically rank, threshold, and select ICs, we need

to extend the IC model to include noise.

One approach is implemented in the FSL package

MELODIC (Beckmann and Smith)

The MELODIC model (i indexes voxels):


xi = Asi + µ + ηi 

xi is p × 1, A is p × q, where q < p, µ is the mean, 
ηi ∼ N (0, σ2Σi). 
Approximate negentropy is used to find the ICs 
A Gaussian mixture model is used to detect activation 
A Baysian approach to assign probabilities to 

– p. 4 components. 
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ICA vs PCA


PCA and ICA are formally very similar: both produce a 
sequence of images and associated timecourses. 

PCA was developed for multivariate Gaussian data, for 
which uncorrelatedness implies independence. 

There is a natural ordering of principal components, 
based on the eigenvalues of the covariance or correlation 
matrix. 

PCA is often used to hopefully reduce the dimensionality 
of the problem, but replacing a high-dimensional dataset 
with a smaller number of orthogonal principal 
components. 

– p. 4 
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ICA vs PCA (Continued)


ICA fails for Gaussian data. It is an attempt to find 
independent non-Gaussian components. (In practice, 
one first centers and whitens the data, so that the data 
are uncorrelated from the beginning.) 

There is no natural ordering of independent 
components, so no natural way to reduce 
dimensionality. 

The PCA algorithm is essentially unique, based on the 
singular value decomposition. 

ICA is algorithm-dependent. And even repeated runs 
using the same algorithm can give different answers, 
since there are random choices made in the 
optimization algorithm (e.g., random starting vectors). 

– p. 4 
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Granger Causality


Prototype Problem: Time series for two nodes X and Y in 
a network, want to measure directed association 
X Y .⇒
Idea: 

Fit model. Estimate variance of forecast of Y given

past of Y (σ
2

1
), and forecast of Y given past of both X


and Y (σ
2
2
).


If X Y , then one expects that σ2
2
 < σ
2

1
; equivalently
⇒


FX→Y ≡ log(σ
21
/σ
22
) > 0


Implementation: Multivariate AR models. Reduces 
essentially to time series regression. Seminal work by 
econometrician Geweke in 1980s. 

– p. 4 
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Granger Causality: Simulated Example 

Multivariate autoregressive model (here, two series): 

(1) (1) (2) 
Xt = 0.8Xt−1 + 0.5Xt−1 + ξt 

X
(2) 

= 0.8X
(2) 

t t−1 + ηt 

Noise term is white, with unit variances. 

Granger causality is defined to be the log of the ratio of the

prediction variance involving the past of only one series,

to the corresponding variance using past of both series.


We follow convention and refer to this as “causality”;

Granger himself later suggested that “temporally related”

would have been a better term.


– p. 4 
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Simulated Data
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Model Fit and Granger Causality 

Coefficients and Coefficient Estimates: 

Coef. a11 = 0.8 a12 = 0.5 a21 = 0 a22 = 0.8


Est. 0.77 0.50 0.008 0.79


Prediction variances (σ2) and Granger causality (κ). 
Possible evidence of 2 1, but not for 1 2.→ →

σ2 = 1.47 σ2 = 0.96 κ2→1 = 0.43

X|X X|X,Y 

σ2 = 1.13 σ2 = 1.11 κ1→2 = 0.02

Y |Y Y |X,Y 

– p. 4 
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Geweke JASA, (1982):


Multivariate time series Z divided into k-dimensional 
component X and ℓ-dimensional component Y . 

X−, X+, X: Past, Past+Present, All of X 

Y −, Y +, Y : Past, Past+Present, All of Y 

We compare forecast variance of Xt given X− with 
−forecast variances which also include Y , Y +, and all of 

Y . (Similarly for predicting Yt). 

– p. 4 
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Regressions, Forecast Variances


Dep. Variable Covariates Forecast Gen. Var.


Xt X− |Σ1|

Xt X−, Y − Σ2
| | 
Xt X−, Y + Σ3| | 
Xt X−, Y Σ4| | 
Yt Y − T1| | 
Yt Y −, X− T2| | 
Yt Y −, X+ T3| | 
Yt Y −, X T4| | 

– p. 5 
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Regressions for X Influencing Y (FX Y )
→

FX→Y = log(|T1|/|T2|) 

Past Present Future 

X Add 

Y Given * 

FX→Y = log( Σ3 / Σ4 )| | | |

Past Present Future 

X Given * 

Y Given Given Add 

– p. 5 
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Regressions for Y Influencing X (FY X)
→

FY →X = log(|Σ1|/|Σ2|) 

Past Present Future 

X Given * 

Y Add 

FY →X = log( T3 / T4 )| | | |

Past Present Future 

X Given Given Add 

Y Given * 

– p. 5 
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Instantaneous Influence Between X and Y (FX Y )
·

FX·Y = log(|T2|/|T3|) 

Past Present Future 

X Given Add 

Y Given * 

FX·Y = log( Σ2 / Σ3 )| | | |

Past Present Future 

X Given * 

Y Given Add 

– p. 5 
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Overall Dependence Between X and Y (FX,Y )


FX,Y = log( T1 / T4 )| | | |

Past Present Future 

X Add Add Add 

Y Given * 

FX,Y = log( Σ1 / Σ4 )| | | |

Past Present Future 

X Given * 

Y Add Add Add 

– p. 5 



5

� 

| | | |
� 

| | | | | | | |

Decomposition of Dependence


FX,Y was first defined by Gelfand and Yaglom (1959) as 
the “measure of information” between X and Y . 

Geweke (1982) decomposed FX,Y into a sum of three 
measures of linear feedback: 

FX→Y + FY →X + FX·Y = 

log( Σ3 / Σ4 ) + log( Σ1 / Σ2 ) + log( Σ2 / Σ3 ) = 

log 
|Σ3||Σ1||Σ2| 

= |Σ4||Σ2||Σ3|
log(|Σ1|/|Σ4|) = FX,Y 

– p. 5 
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Hypothesis Testing


The measures of linear feedback are each likelihood ratio 
statistics comparing a regression model with a nested 
sub-model. 

Likelihood ratio statistics are asymptotically 
χ2-distributed. If k and ℓ denote the dimension of X and 
Y respectively, n is the number of time points, and p is the 
order of the autoregression, then: 

F̂X→Y

a ∼
 χ2(kℓp)
n


F̂Y →X

a
∼
 χ2(kℓp)
n

a


nF̂X·Y
 ∼

a 

n
 ∼

χ2(kℓ) 

F̂X,Y χ2[kℓ(2p + 1)] 

– p. 5 
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MEG Somatosensory Data


SI Contralateral (Left) 
6 Sessions; 240 Trials 

0 100 200 300 400 500 

Time Post−Stimulus, msec 

SII Contralateral (Left) 
6 Sessions; 240 Trials 

0 100 200 300 400 500 

Time Post−Stimulus, msec 

SII Ipsilateral (Right) 
6 Sessions; 240 Trials 

0 100 200 300 400 500 

Time Post−Stimulus, msec 

MI Ipsilateral (Right) 
3 Sessions; 120 Trials 
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Time-Domain Analysis


For each pair of nodes (X,Y ), for each trial: 
1.	 Consider 512 msec post-stim; divide into eight 64 

msec blocks. 
2.	 Fit multivariate AR model of order 5. 
3.	 Calculate 

FX→Y
G ≡ log 

FY →X 

4.	 If X Y is stronger (weaker) association than 
Y 

⇒
X, then G > 0 (G < 0).⇒

5.	 Use average and standard error over trials to 
determine simultaneous confidence intervals. 

– p. 5 
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MEG Somatosensory Data


Shaded Region SIL−>SIIL > SIIL−>SIL 
Simultaneous 95% Confidence Intervals; 240 Trials 

16 80 144 208 272 336 400 464 

Time Midpoint, msec 

Shaded Region SIL−>SIIR > SIIR−>SIL

Simultaneous 95% Confidence Intervals; 240 Trials


16 80 144 208 272 336 400 464 

Time Midpoint, msec 

Shaded Region SIIL−>SIIR > SIIR−>SIIL

Simultaneous 95% Confidence Intervals; 240 Trials
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Granger Causality: fMRI Example 

Goebel R., Roebroeck A, Kim D-S, Formisano E. 
“Investigating directed cortical interaction in time-related 
fMRI data using autoregressive modeling and Granger 
causality mapping,” Magnetic Resonance Imaging, 21, 
1251-1261, 2003. 

Event related design. TR=1s. Two classes of objects 
are associated with L/R button presses. After some 
trials, the subject is cued to switch this association. 

Fit GLM to find “seed” ROI. For each ROI, create 
“Granger Causality Maps” over the whole brain for 
FX→Y , FY →X , FX·Y , based on AR models with lag 1. 

Study appears to be proof-of-concept, claims that it is 
indeed possible to detect causal effects with fMRI. 
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