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I. Multiple Comparisons
 

Ia. Bonferroni Approximation 

Ib. Gaussian Random Field Assumption 

Ic. False Discovery Rate 
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A Hypothetical Hypothesis Test
 

Consider a hypothesis test for which you obtain the 
t-statistic 

T = 4.62, 

with 50 degrees of freedom. The corresponding p-value is 

1 − Pr(−4.62 ≤ T50 ≤ 4.62) = 0.000027. 

Is this necessarily cause for celebration? 

– p. 



The Rest of the Story . . .
 

The t-statistic on the previous slide was obtained by 
choosing the maximum of 64 × 64 × 16 = 65, 536 random 
draws from the null distribution of the test statistic (i.e., 
the T50 distribution). 

So one might typically expect to see a t-statistic this large 
or larger in a typical fMRI volume, even if what you’re 
imaging is a bottle of water. 

We need to adjust p-values for the number of tests 
performed, a process which statisticians call adjusting for 
multiple comparisons. 

– p. 



An Illustrative Example (Model)
 

In order to illustrate many of the basic ideas, it is sufficient 
to consider an example of confidence intervals (or 
hypothesis tests) on just two parameters. 

Consider the simple linear regression model 

yi = δ + β(xi − x̄) + ei, 

where xi = 0, 10, 20, . . . , 100, δ = 0, β = 1, and the 
ei ∼ N (0, 102). 

(Aside: Note that the vectors [1, 1, . . . , 1]T and 
[x1 − x, x¯ 2 − x, . . . , x¯ n − x̄]T are orthogonal.) 

– p. 
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Illustrative Example (Hypothesis)
 

We are interested in testing, at the α = 0.05 level, the null 
hypothesis 

H0 : δ = 0 and β = 1, 

against the alternative 

H1 : δ = 0 or β = 1, 

A joint 95% confidence region for (δ, β) would provide a 
critical region for this test. 

– p. 



Confidence Region
 

Individual 95% Confidence Intervals: 

Indepdent Parameter Estimates 


−5 0 5 

Intercept 

0
.6

 
0

.7
 

0
.8

 
0

.9
 

1
.0

 
1

.1
 

S
lo

p
e

 

– p. 



Comments
 

The box formed by the two individual confidence intervals 
is considerably smaller than the actual bivariate 
confidence region. 

Each confidence interval for a parameter has confidence 
level 0.95, so the region formed by the intersection of 
these intervals has confidence 0.952 = 0.9025 < 0.95. 

– p. 
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Comments (Cont’d)
 

Over repeated future data, the probability that either 
parameter falls in it’s interval is 1 − α∗ = 0.95. Since the 
model has been set up so the the estimates (δ,̂ β̂) are 
independent, the actual probability of rejecting H0 for the 
pair of confidence intervals 

α = Pr( T1 t1 or T2 t2) =| | ≥ | | ≥ 
1 − (1 − α∗)

2 = 1 − (1 − 0.05)2 = 0.0975. 

– p. 1 
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Comments (Cont’d)
 

Working backwards, if we choose α∗ to be 

α∗ = 1 −
√

1 − α ≈ α/2, 

then we will achieve our goal of an overall significance 
level of α. 

This is approach achieves exactly the desired 
significance if the test statistics are independent, but is 
conservative if the test statistics are dependent. 

– p. 1 
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Bonferroni Intervals with 95% Confidence Ellipse
 

Individual 97.47% Confidence Intervals

 With 95% Joint Confidence Ellipse
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Bonferroni Correction
 

The Setup: We have k independent test statistics 
T1, . . . , Tk, corresponding to parameters β1, . . . , βk, 
respectively. 

For each test statistic, we reject the null hypothesis 
Hi : βi = 0 when Ti ti, for constants t1, . . . , tk.| | ≥ 
We would like to calculate the probability of rejecting the 
null hypothesis 

H0 : β1 = β2 = . . . = βk = 0 

against the alternative that H0 is not true. 

– p. 1 
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Bonferroni Correction (Cont’d)
 

This probability of rejecting H0 is 

α = P0( T1 t1 or T2 t2 or . . . Tk tk)| | ≥ | | ≥ | | ≥ 
k 

= 1 − Pr(|Ti| ≤ ti) = 1 − (1 − α∗)
k . 

i=1 

Hence, we choose 

α∗ = 1 − (1 − α)(1/k) ≈ 1 − (1 − α/k) = α/k. 

– p. 1 
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Example Revisited: Alternative Parameterization
 

Next we see what happens in our simple linear regression 
example if we don’t subtract of the mean of the xs: 

yi = δ̃ + βxi + ei, 

where xi = 0, 10, 20, . . . , 100, δ = 0, β = 1, and the 
ei ∼ N (0, 102). To relate this to the previous 
parameterization, note that 

δ̃ = δ − x.¯

(Aside: Note that the vectors [1, 1, . . . , 1]T and 
[x1, x2, . . . , xn]T not orthogonal! Consequently, the t-tests 
for δ̃ and β will not be independent.) 

– p. 1 
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Alternative Parametrization (Cont’d)
 

We are interested in testing the null hypothesis 

H0 : δ̃ = −x̄ and β = 1, 

against the alternative 

H1 : δ̃ =6 −x̄ or β =6 1, 

at the 0.05 significance level. 

A joint 95% confidence region for (δ̃, β) would provide a 
critical region for this test. 

– p. 1 
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Confidence Region for a Dependent Example, With Bonferroni Interval
 

Bonferonni 95% CIs with Confidence Ellipse:
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Bonferroni and Activation Clusters
 

In addition to requiring that p values be below a threshold, 
one can impose as an additional requirement that there 
be a minimum number of voxels clustered at any “active” 
location. 

There are obviously many ways to pair critical p-values 
with minimum cluster sizes. 

There is a stand-alone C program, AlphaSim that can 
determine cluster significance levels by simulation. 

AlphaSim is part of the AFNI distribution (Bob Cox, NIH, 
afni.nimh.nih.gov) 

– p. 1 
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Example AlphaSim Command Line
 

A typical run of AlphaSim: 

AlphaSim -nx 46 -ny 55 -nz 46 \
 

-dx 4.0 -dy 4.0 -dz 4.0 \
 

-sigma 0.65 \
 

-rmm 6.93 \
 

-pthr 0.05 -iter 10000
 

– p. 1 
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AlphaSim Command Line (Cont’d)
 

-nx -ny -nz: Dimension of brain in voxels
 

-dx -dy -dz: Voxel size in mm.
 

-sigma: SD of Gaussian smoothing kernel
 

-rmn: Two active voxels ≤ rmn mm apart are considered
 
to be in the same cluster.
 

-pthr: Threshold p-value
 

-iter: Number of simulations.
 

(See AlphaSim documentation for other options.)
 

– p. 2 
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Example AlphaSim Output
 

Data set dimensions:
 

nx = 46 ny = 55 nz = 46 (voxels)
 

dx = 4.00 dy = 4.00 dz = 4.00 (mm)
 

Gaussian filter widths:
 

sigmax = 0.65 FWHMx = 1.53
 

sigmay = 0.65 FWHMy = 1.53
 

sigmaz = 0.65 FWHMz = 1.53
 

Cluster connection radius: rmm = 6.93
 

Threshold probability: pthr = 5.000000e-02
 

Number of Monte Carlo iterations = 10000
 

– p. 2 
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Example AlphaSim Output (Cont’d)
 

Cl Size Frequency Max Freq 

1 15616950 0 

2 5123184 0 

3 2397672 0 

4 1320445 0 

38 228 210 

39 190 175 

40 140 134 

41 114 108 

42 91 87 

43 60 57 

Alpha
 

1.000000
 

1.000000
 

1.000000
 

1.000000
 

0.113100
 

0.092100
 

0.074600
 

0.061200
 

0.050400
 

0.041700
 

– p. 2 
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Interpretation of AlphaSim Results
 

Maximum active clusters of 42 or more below threshold 
p = 0.05 occur about 5% of the time under the null 
hypothesis of no activation. 

Note the following: 

For a higher p-value threshold, the minimum
 
significant cluster size will be larger.
 

This approach accounts for spatial correlation induced 
by smoothing, but not for and spatial correlation 
present in the unsmoothed data. 

– p. 2 
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Summary: Bonferroni
 

For an overall test at the α significance level, select
 
individual voxels among N total as active if p ≤ α/N .
 

Not a bad approximation if voxels are nearly independent.
 

Can be very conservative if there is considerable spatial 
correlation among voxels. 

Using both a p-value threshold and a minimum cluster 
size via AlphaSim is one way to partially overcome this 
conservatism. 

– p. 2 
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Gaussian Random Field
 

A Gaussian random field is a stationary Gaussian
 
stochastic process, usually in 2 or 3 dimensions.
 

The one-dimensional case of GRF is Brownian motion 
(formally, a Weiner process). 

Unsmoothed BOLD activation is not well approximated as 
a GRF, so spatial smoothing is generally done if one is to 
use GRF theory. 

Smoothing is averaging, and averages of (almost) 
arbitrary random variables are approximately Gaussian. 
This is the essence of the Central Limit Theorem. 

– p. 2 
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Euler Characteristic
 

If one thresholds a continuous GRF, the the Euler 
Characteristic is 

EC = (# Blobs) − (# Holes), 

if the threshold is sufficiently high, then this will 
essentially become the (# Blobs). 

If the threshold is higher still, then the EC will likely be 
zero or 1. 

If we threshold high enough, then we might be able to 
assume, at an appropriate significance level, that all blobs 
are due to activation. 

– p. 2 
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Expected EC
 

By definition, 

E(EC ) = k Pr(EC = k)
 
k 

For high thresholds, the probability of more than one blob 
under H0 is negligible, and we have 

E(EC ) ≈ Pr(EC = 1) 

For large u, E(EC ) will approximate 

E(EC ) ≈ Pr(maxTi > u). 
i 

– p. 2 
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Expected EC (Cont’d)
 

E(EC ) ≈ Pr(maxTi > u). 
i 

Either 

Attempt to approximate this expectation for a choice of 
u (adjusted p-value), or 

Select u so that E(EC ) equals, say, 0.05 (adjusted 
hypothesis test). 

– p. 2 
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Corrected p-Values via E(EC )
 

We can obtain p-values by using 

Pr(maxTi > u) ≈ E(EC u)
i 

R(u2 − 1)e−u2/2 

= 
4π2(2 log(2))3/2 

Where R is the number of Resolution Elements, defined 
to be a unit search volume, in terms of the full width at 
half maximum (FWHM) of the kernel used for spatial 
smoothing. 

(So now you know why SPM requires that you do spatial 
smoothing!) 

– p. 2 
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Resolution Elements
 

S 
R = ,

fxfyfz 

where 

S is the search volume, in mm3 , 

and fx, fy, fz are the FWHMs of the Gaussian spatial 
kernel in each coordinate direction, in mm. 

– p. 3 
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Summary: Gaussian Random Fields
 

GRF theory requires that we know the spatial correlation, 
at least approximately. 

In order to meet this requirement, we must do fairly hefty 
spatial smoothing (i.e., precoloring). 

This has the obvious disadvantage of blurring together 
brain structures with different functions, particularly if the 
smoothing is not done on the cortical surface. 

Compare with AlphaSim, another way for accounting for 
spatial correlation due to smoothing. 

– p. 3 
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False Discovery Rate
 

The Bonferroni and GRF approaches ensure that the 
probability of incorrectly declaring any voxel active is 
small. If any voxels “survive,” one can reasonably expect 
that each one is truly active. 

An alternative approach is to keep the proportion of 
voxels incorrectly declared active small. Among those 
voxels declared active, a predetermined proportion (e.g., 
0.05), on average, will be declared active in error (“false 
discoveries”). 

– p. 3 
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Implementing FDR
 

Order the N p-values from smallest to largest: 

p(1) ≤ p(2) ≤ · · · ≤ p(N). 

Declare as active voxels corresponding to ordered 
p-values for which 

p(i) ≤ qci/N, 

where q is the selected FDR.
 

The choice of c depends on the assumed correlation
 
structure for the test statistics.
 

– p. 3 
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Values for c
 

Two choices for c have been suggested in the literature
 

For independent tests, or tests based on data for which 
the noise is Gaussian with non-negative correlation 
across voxels, use c = 1. 

For arbitrary correlation structure in the noise, use 
c = 1/(log(N) + γ), where γ = 

. 
0.577 is Euler’s constant. 

– p. 3 
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A Simulated Example
 

Number of Voxels: 

N = 64 × 64 × 16 = 65, 536 

Number of Active Voxels: 

N1 = 0.02N = 1, 335
 

“Inactive” statistics independently distributed t50.
 

“Active” statistics independently distributed noncentral-t,
 
t50(δ), where δ = 3.5. 

– p. 3 
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Densities for Active and Inactive Voxel Statistics
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Histogram of the Voxel Statistics
 

Histogram of 64x64x16 =65536 Statistics 

F
re

qu
en

cy
 

0 
20

0 
40

0 
60

0 
80

0 
10

00
 

12
00

 

−4 −2 0 2 4 6 8 

Test Statistic 

– p. 3 



8

Graphical Illustration of Results
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Simulation Results 

.
FDR = 35/549 = 0.064, c = 1: 
(Solid line in preceeding figure) 

Discovered 

Yes No 

Correct 514 64,166
 

Error 35 821
 

Total 549 64,987
 

– p. 3 
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Simulation Results 

.
FDR = 1/123 = 0.008, c = 1/(log(N) + γ): 
(Broken line in preceeding figure) 

Discovered 

Yes No 

Correct 122 64,200
 

Error 1 1213
 

Total 123 65,413
 

– p. 4 
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Simulation Results 

Bonferroni (FDR = 0), p = .05/N = 7.6 × 10−7 

(Not shown in preceeding figure) 

Discovered 

Yes No 

Correct 44 64,201
 

Error 0 1291
 

Total 44 65,492
 

– p. 4 
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Summary: False Discovery Rate
 

Can be more sensitive at detecting true activation than 
Bonferroni without requiring the heavy spatial smoothing 
of GRF theory. 

But a change in philosophy is required: instead of making 
the likelihood of any voxel being falsely declared active 
small, one is willing to accept that a small proportion of 
voxels will likely be false discoveries, and instead attempt 
to control the size of this proportion. 

– p. 4 
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II. Permutation Tests
 

IIa. Introduction and illustrative example (Strauss et al., 
NeuroImage 2005). . 

IIb. Heart Damage and Stroke (Ay et al., Neurology 2006) 

– p. 4 
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Permutation Tests: Introduction
 

Permutation tests are useful for comparing groups or 
conditions without distributional assumptions: 

Ref: Nichols, TE and Holmes, AP (2001). 
Nonparametric permutation tests for functional 
neuroimaging: A primer with examples. Human Brain 
Mapping, 15, 1-25. 

– p. 4 
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Illustrative Example
 

Data from Strauss et al. (2005). FMRI of sensitization to 
angry faces. NeuroImage, 26(2), 389-413. Left anterior 
cingulate (LaCG) activation to angry faces in first and second 
half of a session, for eight subjects. 

Subject AS BG CS GK JT ML MP RL
 

First 0.02 0.06 0.00 0.33 -0.07 0.01 -0.17 0.18
 

Second 0.36 0.22 0.19 0.26 0.47 0.16 0.46 0.09
 

– p. 4 
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Illustrative Example (Cont’d)
 

A paired t-test with 8 − 1 = 7 degrees of freedom leads 
to the t-statistic 2.515. 

Comparing this value to the theoretical reference null 
distribution (T7), one determines a two-sided p-value of 
0.040. 

The t-test is quite robust to modest departures from 
assumptions, even for N = 8, so using the T7 as a 
reference distribution for the p-value is probably OK. 

However, what if one did not want to make the 
assumptions necessary for the validity of this theoretical 
null distribution? 

(Note that for some complicated test statistics, or for 
very messy data, one often doesn’t know a reasonable 
approximation to the null distribution.) 

– p. 4 
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Example: The Permutation Distribution 

The set of 16 numbers can be divided into 2 ordered 
pairs (first, last) 518,918,400 ways – of which only 1 will 
correspond to the correct pairing. 

The basic idea of a permutation test is to randomly 
permute the “labeling” of the data (i.e., the assignment 
of values to pairs, and the ordering of these pairs) many 
times. 

For each labeling, a test statistic of interest is calculated 
(here a paired t-statistic). 

One then compares that statistic obtained from the 
correctly labeled data (here, T = 2.515) with the 
empirical reference distribution of the same statistic 
calculated for many permuted labellings. 

– p. 4 
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Example: Remarks
 

Note that one calculated a t-statistic, but never needed 
to use the theoretical t-distribution to get a p-value. 

Note also that this approach can be applied in a very 
wide range of practical situations. 

– p. 4 
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Example: Permutation Test Result
 

Permutation Distribution
 
for Anger Example (L−aCG)
 

(Strauss et al., NeuroImage, 2005)
 

P
ro

b
a

b
il
it
y
 

−4 −2 0 2 4 

0
.0

 
0

.1
 

0
.2

 
0

.3
 

0
.4

 

Permutation P−value 
From Simulation = 0.047 

P−value from 
T(7) = 0.040 

T−Statistic 
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Troponin, Stroke, and Myocardial Injury
 

Ay, H. et al. (2006). Neuroanatomic correlates of 
stroke-related myocardial injury. Neurology, to appear. 

Hypothesis: 
A High level of troponin is a sensitive marker of heart 
damage. 
Heart damage could result from strokes in certain 
locations. 
Can we determine where these locations might be 
by comparing stroke patients with high troponin with 
matched low-troponin controls? 

– p. 5 
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Troponin: Data
 

Data: For 50 consecutive stroke patients with high 
troponin and 50 stroke controls with very low troponin, 
we have a mask of zeros and ones indicating which 
voxels are infarcted in each stroke lesion. 

We could compare these with voxel-wise t-tests, except 
that the masks are very non-Gaussian. 

– p. 5 
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Troponin: Permutation Test
 

Permute the labeling of high (cases) and low (controls) 
troponin and calculate voxel-wise t-statistics. 

Use AlphaSim to determine a suitable threshold and 
cluster constraint (threshold of 0.05, minimum cluster of 
43 voxels). 

Result: Patients with strokes in the right insula and right 
inferior parietal lobule tended to more frequently have 
high troponin than other stroke patients. 

– p. 5 
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Example: Permutation Test Result
 

Image removed due to copyright restrictions.
 
Source: Ay, H., M. Vangel et al. "Neuroanatomic Correlates of Stroke-related Myocardial Injury." 
 
Neurology 66, no. 9 (2006): 1325-9. 
 

– p. 5 
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Summary
 

The concept of a permutation test is extraordinarily powerful 
and useful. These tests are easy to understand, and, in 
principle, easy to apply. They are useful in situations where 
one wishes to employ a statistic with unknown distribution 
under the null hypothesis, or perhaps a well-known test 
statistic in situations where the assumptions for the usual 
null distribution are not satisfied. 

– p. 5 
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III. Analyses for Groups of Subjects
 

IIIa.	 Fixed Effects 

Analysis on average maps. 

IIIb.	 Random Effects 

Usual two-stage approach 

Worsley et al. (NeuroImage, 2002) 

A Bayesian approach 

IIIc.	 Examples of Bayesian Two-Stage Random Effects 
Modelling 

Spatial visual cueing 

Passive viewing of angry faces 

IIId.	 Conjunction Analysis 
– p. 5 
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Group Analyses
 

We next consider approaches to data analyses which 
involve more than one subject. 

The first difficulty that one has to address in these 
situations is warping each subjects data onto a common 
template, such as Talaraich coordinates. 

This process can easily introduce and difficulties and 
distortions of its own, but these are beyond the scope of 
the present discussion. 

– p. 5 
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Fixed Effects Analyses
 

It is conceivable that one might want to make inference 
for only the subjects at hand, without any desire to 
extrapolate to a larger population. 

This might be the case for clinical applications of fMRI, for 
example, where the objective is to understand the 
subjects – patients – who are being studied or treated. 

Fixed effects models should be used in such cases. 

But since fMRI is presently a research tool, fixed effects 
analyses are usually less appropriate than random effects 
analyses, in which one is concerned with inferences valid 
for a population, or equivalently, for the “next” subject 
which one might obtain. 

– p. 5 
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Fixed vs. Random Effects
 

Assume that several machines are used in a production 
environment. To fix ideas, let’s say these machines are 
for DNA sequencing. 

If I have several of these machines in my lab, I would 
presumably be interested in quantifying the relative 
performance of each of them. Fixed effects models would 
be appropriate. 

On the other hand, if I owned the company that makes 
the machines, then I’d want to characterize the 
performance of any one of the machines, conceptually 
drawn at random. The machines would then constitute a 
population, and I’d use random effects analyses. 

– p. 5 
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The Random-Effects Idea
 

A contrast at any given voxel is regarded as a sum of 
three components: 

1.	 The true (but unknown) contrast 

2.	 A random shift from the truth which depends only on 
the subject. 

3.	 A second random shift from the truth due to 
measurement uncertainty within a subject. 

In the limit of many subjects, (2) can be made arbitrarily 
small; in the limit of long scans, (3) can be made 
arbitrarily small (except perhaps for a measurement bias). 

– p. 5 
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The Random-Effects Idea: Schematic
 

True Contrast 
Between-Subjects 

Within-Subj.
Population 

Estimated Contrast 
• 

Within-Subject 

Population of 
Subj. Means 

Measurement 
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Two Approaches to Data Analysis
 

Fixed-Effects Analysis: Average data over subjects, look 
at p-values for contrast on average map. (Degrees of 
freedom ≈ number of time points in scan.) 

Random-Effects Analysis: Estimate contrast map for each 
subject. Use these maps as “data” for a second-level 
analysis. (Degrees of freedom ≈ number of subjects.) 

– p. 6 
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“Standard” Two-Stage Approach for Random Effects
 

Stage 1: Obtain the a map of effects for each subject.
 

Stage 2: Use these effect maps as “data” in the second
 
stage of the analysis.
 

Form the t-statistic for an overall test of significance of the
 
effect or contrast.
 

Note that these maps enter into the second stage on
 
“equal footing”.
 

– p. 6 
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Critique of Usual Two-Stage Approach
 

The usual two-stage approach to multi-subject analyses 
treats the contrast estimate maps from each subject as 
given data, without consideration of the uncertainty in 
these values, which may be considerable and which may 
differ from subject to subject. 

A better approach is two summarize a contrast of interest 
by two maps: a contrast estimate map, and a 
corresponding standard error map. This is the approach 
advocated by Worsley (NeuroImage (2002)), for example. 

– p. 6 
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Worsley et al. NeuroImage, 2002, 1-15
 

Within-run analysis: Fit linear model with cubic regression 
spline terms for trend, assuming AR (p) error structure. 
Prewhiten using estimated covariance matrix, and refit. 

Covariance matrix is estimated by implicitly solving 
Yule-Walker equations; correlations are corrected for bias 
and spatially smoothed. 

For a contrast of interest, summarize each run with a 
contrast map and a SE map. 

– p. 6 
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Worsley et al. NeuroImage, 2002, 1-15 (Cont’d) 

Between-Subject Analysis: Fit a second-level model, fixing 
the “within” errors at their estimates, and estimating 
(EM/REML) “between” variance σ2, and possible 
second-level fixed-effect covariates. 

Regularize σ2 by spatially smoothing between/within ratio. 
Estimate approximate degrees of freedom of smoothed 
σ2 using Gaussian random field theory, form T − or 
F −statistic map for second-level covariates. 

– p. 6 
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Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.



Source: Worsley, K. J., et al. "A General Statistical Analysis for fMRI Data." 
NeuroImage 15, no. 1 (January 2002): 1-15.




Figure 1: Fmristat flow chart for the analysis of several runs (only one session per subject); 
E = effect, S = standard deviation of effect, T = E/S = T statistic. 

21 
– p. 6 
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A Bayesian Approach
 

Assume χ2 and normal contributions to the likelihood for 
the within-subject variances and contrast estimates, 
respectively. 

Model the betwen-subject effects as normally distributed 
with mean zero and unknown variance. 

Use non-informative prior distributions for within-subject 
standard deviations, contrast estimates, and usually (but 
not necessarily) for the between-subject standard 
deviation. 

– p. 6 
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Bayesian Approach (Cont’d)
 

Calculation of posterior distribution of contrast is 
straightforward by numerical integration. 

Introducing subject-level covariates (e.g., age, treatment) 
is easy in principle, though simulation (“Gibbs Sampler”) 
will have to replace exact integration. 

– p. 6 
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Bayesian Hierarchical Model for RE Analysis
 

i = 1, . . . , k indexes subjects
 

j = 1, . . . , ni indexes time points
 

p(xij|δi, σi 
2) = N (δi, σi 

2)
 

p(σi) ∝ 1/σi
 

p(δi|µ, σ2) = N (µ, σ2)
 

p(µ) ∝ 1
 

p(σ) ∝ 1
 

– p. 6 
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Posterior for µ given σ = 0, k ≥ 1
 

Given σ = 0, then the posterior distribution of the consensus 
mean µ is proportional to a product of scaled t-densities: 

k � � 

p(µ|{xij}|σ = 0) ∝ 
� 

t 
1 

i 
Tn 
′ 

i−1 
xi 

t 
− 
i 

µ 

i=1 

– p. 7 
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The General Case: σ ≥ 0
 

In general, p(µ|σ, {xij}) is proportional to a product of the 
distributions of the random variables 

si

Ui = xi + Tni−1 + σZ, √

ni 

where Tni−1 is a t-distributed random variable with 
ni − 1 degrees of freedom, Z is distributed N (0, 1), and 
Tni−1 and Z are independent. 

ti = si/
√
ni is within-subject SE; xi is within subject 

mean. 

– p. 7 
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� 

A Useful Probability Density
 

Let Tν and Z denote independent Student-t and standard 
normal random variables, and assume that ψ ≥ 0 and ν > 0. 
Then 

ψ 
U = Tν + Z 

2 

has density 
h i 

2 

1 
� 

∞ y(ν+1)/2−1e 
−y 1+ 

ψy 
u 
+ν 

fν (u;ψ) ≡
Γν/2

√
π 0 

√
ψy + ν 

dy.
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� � � � 

Posterior of (µ, σ)
 

Assume δi ∼ N (µ, σ2), σ ∼ p(σ), 
p(µ) ∝ 1, p(σi) ∝ 1/σi. 

Then the posterior of (µ, σ) is 

p � � 

p(µ, σ |{xij}) ∝ p(σ) 
� 

t

1 

i 
fν 

xi 

t

−
i 

µ
;
2

t

σ
2 
i 

2 
. 

i=1 

The posterior of µ given σ = 0 is a product of scaled 
t-densities centered at the xi, since 

1 
fν 

xi − µ
; 0 =

1 
Tν 
′ 

xi − µ
. 

ti ti ti ti 


We will take p(σ) = 1, though an arbitrary proper prior 
does not introduce additional difficulties. 

– p. 7 
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Example 1: Spatial Visual Cueing
 

Pollmann, S. and Morillo, M. (2003). “Left and Right 
Occipital Cortices Differ in Their Response to Spatial 
Cueing,” NeuroImage,18, 273-283. 

Neumann, J. and Lohmann, M. (2003). “Bayesian 
Second-Level Analysis of Functional Magnetic 
Resonance Images,” NeuroImage, 20, 1346-1355. 

– p. 7 
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Occipital Cortex and Spatial Cueing
 

Visual cue (large or small) on one side of screen (left or 
right). 

Subject told to fixate on center of screen, but pay 
attention to side where cue appeared. 

Target appeard either on same side as cue (valid trial) or 
opposite side (invalid trial) 

– p. 7 
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Pollman and Marillo, Results
 

Main results: Contrast of valid-trial LHS with valid trial 
RHS showed significant differences in bilateral lingual 
gyrus and lateral occipital gyrus, and IPS/TOS. 

Second contrast: valid-trial-small-cue with valid-trial-big-cue 
significant in three regions from Bayesian analysis of 
Neumann and Lohmann (2003). 

– p. 7 
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Region A: valid-small-cue vs valid-large-cue
 

Marginal Posterior of Mean With
 
95% HPD Probability Interval (Neumann−A)
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Between−Sub. Standard Deviation 
Post. mean = 0.052 Post. S.D. = 0.02 0.015 < sigma < 0.091 
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Posterior A: valid-small-cue vs valid-large-cue
 

Neumann Region A Posterior: No Random Effect 
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Example 2: Sensitization to Angry Faces
 

Vangel, MG and Strauss, MM (2005). “Bayesian and 
Frequentist Approaches to Two-Stage Inference in 
Multi-Subject fMRI With an Application to Sensitization to 
Angry Faces,” Poster at Organization for Human Brain 
Mapping annual meeting. 

Strauss M., Makris N., Kennedy D., Etcoff N., Breiter H. 
(2000). “Sensitization of Subcortical and Paralimbic 
Circuitry to Angry Faces: An fMRI Study,” NeuroImage 11, 
S255. 

Strauss, M.M. (2003). “A Cognitive Neuroscience Study 
of Stress and Motivation,” Phd Dissertation, Department 
of Psychology, Boston Univeristy. 

– p. 7 



Sensitization to Angry Faces 

Eight participants passively viewed alternating blocks of 
angry and neutral Ekman faces, with fixations in between. 



1

Angry Faces: Design
 

Subject Sequence
 
A 1 2 1 2 
B 1 2 1 2 
C 2 1 2 1 
D 2 1 2 1 
E 1 2 2 1 
F 1 2 2 1 
G 1 2 2 1 
H 2 1 1 2 

. . . where NAAN = 1 and ANNA = 2.
 

– p. 8 



2

Habituation vs. Sensitization
 

One typical aspect of block designs (such as the “angry 
faces” study) is that subjects tend to habituate to the 
stimulus, with consequent decreased BOLD activation. 

An interesting aspect of the present data is that, in many 
regions subjects tended to have a stronger BOLD 
response in the second half as compared to the first. This 
is called sensitization. 

– p. 8 
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A Regression Model
 

For “representative” voxels in each subject: 

log(yt) = β0 + βhalf + βtype + 

βhalf × βtype + ǫt 

where βtype is a 3-level factor for face type (Angry, 
Neutral, Fixation); βhalf (levels 1 and 2) compares the 
first and second half of the experiment, and ǫt is (for 
simplicity) here modeled as white noise. 

– p. 8 
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Habituation/Sensitiziation Contrast
 

For models of log of the data, contrasts become 
dimensionless ratios. (Only BOLD changes have real 
meaning.) 

The following contrast is useful for testing for 
sensitization/habituation: 

cS = exp[(βA,2 − βN,2) − (βA,1 − βN,1) 

We also looked at 

cH = exp(βN,2 − βN,1) 

Data from each subject are summarized by contrasts 
estimates and standard errors, which are used as input 
to a second-level Bayesian analysis. 

– p. 8 
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Typical ‘Raw’ BOLD Timecourse
 

’Raw’ Data, JT, L. Posterior Hippocampus 

40
5 

41
0 

41
5 

42
0 

42
5 

43
0 

43
5 

B
O

LD
 A

ct
iv

at
io

n 

Angry 
Neutral 
Fixation 

0 200 400 600 800 1000
 

Time, sec
 

– p. 8
 



6

Block Averages For All Subjects
 

Left Posterior Hippocampus 
 
Individual Subjects and Avg. Over Subjects
 

−
10

 
−

5 
0 

5 
10

 

M
ea

n 
D

iff
er

en
ce

: A
ng

er
 −

 N
eu

tr
al

as 

as 

as 

as 

as 

as 

as 

as 

bg 

bg 

bg 

bg 
bg 

bg 

bg 

bg 

cs 

cs 

cs 
cs 

cs 

cs 
cs 

cs 

gk 

gk 

gk 
gk 

gk 
gk 

gk 
gk 

jt 

jt 

jt 

jt 

jt 

jt 

jt 

jt 

ml 
ml 

ml 

ml 

ml 

ml 

ml 

ml 

mp 

mp 

mp 

mp 

mp 

mp 

mp mp 

rl 

rl 

rl 

rl 

rl 

rl 

rl 

rl 

1 2 3 4 5 6 7 8 


Period 

– p. 8 




7

Posterior for LPHIP Sensitization
 

Posterior for Left Posterior Hippocampus 
With 95% HPD Contour 
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A/N: Sensitization N/N: Habituation
 

Anger − Neutral Interaction With Block 
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The Problem of Not Enough Subjects
 

Random-effects models include variability between 
subjects into the standard errors of estimates. 

If you only have a few subjects (e.g., 5 or so), then there 
is not much information in the data to estimate this 
variability! 

So your standard errors are large, and it’s much harder to 
establish significance than it is with FE analyses. (Note 
the degrees of freedom of the t-statistics in our example: 
n(s − 1) for FE; s − 1 for RE. So the t-distribution is more 
diffuse, and the standard error has the extra σb 

2/s term.) 

– p. 8 
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Not Enough Subjects (Cont’d) 

It’s important to realize that the large standard errors for
 
RE analyses with few subjects is usually not a fault of the
 

2metholdogy. Rather, one is incorporating σ
b
 in the
 
standard errors of the estimates, and this is quantity 
which can’t be well estimated except under two 
conditions: 

You have lots of subjects, and so σ2
/s is reasonably
 b


small, and your t-test for effect significance has 
adequate degrees of freedom. 

You regularize the estimate of σ̂2

b
 by including
 

information which isn’t in the data. This can be done 
explicitly, via a prior distributions and a Bayesian 
analysis, or implicitly, as in Worsley (2002). 

– p. 9 
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Typicality
 

Friston, Holmes and Worsley (NeuroImage, 1-5, 1999) 
introduce the concepts of typicality and conjunction 
analysis as a way to make inference with respect to a 
population in a fixed-effects context. 

If one has a small sample of subjects, and a certain 
feature is observed in several of these subjects (adjusting 
for multiple comparisons), then one can say, qualitatively, 
that this feature is “typical,” and thus likely to be present in 
a population. 

This is to be contrasted from quantitative assessment of 
what the “average” effect is in a randomly selected 
subject from a population. 

– p. 9 
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Conjunction Analysis
 

In conjunction analysis, one attempts to find what 
activation is statistically significantly in all (or, perhaps, 
most) subjects. 

This feature can then be thought of as typical, i.e., more 
likely than not to be present in the population from which 
the subjects are drawn. 

– p. 9 
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IV. Model Validation
 

The GLM is a very powerful tool, but like any modeling 
tool, it is only good to the extent that the modeling 
assumptions are valid. 

If assumptions are grossly violated, then inferences can 
be seriously misleading. 

– p. 9 
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Linear Model (GLM) Assumptions
 

The assumptions underlying the model include: 

The form of the model for the mean. 

The temporal correlation structure, and equal-variance 
assumptions. 

Gaussian errors. 

Separation of signal from noise (e.g., What part of the 
trend in a time course is a “nuisance effect” to be 
filtered out, and what part of it is slowly varying 
signal?) 

– p. 9 
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The Form of the Model
 

If your X matrix does not appropriately model the factors 
contributing to mean activation, then your estimates can 
be seriously biased. 

This bias can, in principle, be detected by looking at the 
residuals. 

Think of the example of a straight line fit to data for which 
a parabola would be much better. 

How would the residuals (deviations from the fit) tell you 
that your model is inappropriate? 

– p. 9 
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Error Variance Assumptions
 

Inappropriate modeling of temporal correlation can give 
you a biased estimate of the uncertainty in effects, and 
grossly incorrect estimates of degrees of freedom for 
voxel t- or F -statistics. 

In principle, one can test this by looking to see if the 
residuals at each time course are (at least approximately) 
white noise. 

– p. 9 
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Error Variance Assumptions (Cont’d)
 

How does the temporal autocorrelation vary from voxel to 
voxel? Is it adequate to use the same model for each 
voxel? 

Assuming equal within-voxel variances when these 
variances differ considerably is also something that one 
might want to look out for, though checking the correlation 
estimates is probably more important. 

– p. 9 
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Gaussian Errors
 

When doing inference, we assume that the noise in our 
data follows Gaussian distributions. 

(This assumption is necessary for determining standard 
errors of estimates; it is not required for the estimates 
themselves.) 

Fixed effects analysis are not very sensitive to violation of 
this assumption. The central limit theorem implies that 
averages tend to be Gaussian in many situations, and 
coefficient estimates are essentially weighted averages. 
Standardized contrasts will generally be approximately 
t-distributed (Central Limit Theorem; if standard errors 
and degrees of freedom are appropriately estimated). 

– p. 9 



9

Gaussian Errors (Cont’d)
 

This robustness, unfortunately, does not extend to 
random effects. Estimates of variances between subjects, 
for example, will likely be sensitive to to the assumption of 
Gaussianity. That being said, Gaussian random-effects 
models are very widely used, because there are not good 
alternatives. 

– p. 9 
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Separation of Signal from Noise
 

A necessary step in any fMRI analysis is to remove 
nuisance effects from the data. 

Usually these results are low-frequency trends, and they 
are removed either by high-pass filtering, or by explicit 
modeling via covariates in the GLM. 

Always keep in mind that if your have signal which looks 
like the trend being removed, then you might be “throwing 
the baby out with the bathwater.” 

One example might be a nuisance physiological effect, 
which you’d like to model and remove. If this effect is, at 
least in part, associated with an experimental stimulus, 
then you could be discarding important signal with the 
noise. – p. 10 
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Model Selection
 

In any course in regression analysis, one learns how to 
choose a “best” model from within a family of interesting 
candidate models. 

Part of this approach involves examining candidate 
models for goodness-of-fit, mostly be examining residuals 
as discussed earlier. 

Another part of this approach is model comparison, which 
involves fitting a “large” model, with perhaps too many 
parameters, and then comparing this fit to a “smaller” 
model in which some of these parameters are 
constrained, either to equal zero, or else perhaps to equal 
each other. 

– p. 10 
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Model Selection (Cont’d)
 

Model comparison thus reduces to hypothesis testing, in 
the simplest textbook situations, to F -tests. 

This approach can be applied to fMRI, although instead 
of a single F -test, we will have F maps and associated 
p-value maps to interpret. 

More general model comparison tool compare the 
reduction in residual sum of squares between nested 
models, penalizing for complexity due to adding 
parameters. Two such criteria are AIC and BIC (Akaike 
Information Criterion; Bayesian Information Criterion). 

– p. 10 



3

Model Validation: SPMd Toolbox
 

Luo and Nichols (2002). “Diagnosis and Exploration of 
Massively Univariate Datasets,” Technical Report, U. 
Mich Dept. of Biostatistics. (Available from SPM 
Website). 

Luo and Nichols (2003). “Diagnosis and Exploration of 
Massively Univariate Datasets,” NeuroImage, 19, 
1014-1032. 

Zhang, Luo and Nichols (2006). “Diagnosis of 
Single-Subject and Group fMRI Data with SPMd,” 
Human Brain Mapping, 27, 442-451. 

– p. 10 
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