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• Why, introduction

• How:  Review of k-space trajectories
Different techniques (EPI, Spiral)

• Problems from B0 Susceptibility artifacts

Fast MR Imaging
Techniques
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Why fast imaging

Capture time course,
(e.g. hemodynamic)
eliminate artifact from motion 
(during encode.)
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Magnetization vector durning MR
RF

Voltage
(Signal)

time

Mz

time

encode
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Review of Image encoding,
journey through kspace

Two questions:

1) What does blipping on a gradient do to the
water magnetization.

2) Why does measuring the signal amplitude
after a blip tell you info about the spatial
frequency composition of the image 
(k-space).
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Aside: Magnetic field gradient

Uniform magnet Field from 
gradient 
coils

Total field

Bo Gx x Bo + Gx x

x

z
Gx =∂Bz ∂x
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Step two: encode spatial info. 
in-plane
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v = γBTOT = γ(Bo + Gx x)
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How does blipping on a grad. encode
spatial info?
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υ(y) = γBTOT = γ Bo  Δy Gy
θ (y) = υ(y) τ   = γ Bo Δy (Gy τ)
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How does blipping on a grad. encode
spatial info?
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How does blipping on a grad. encode
spatial info?

The magnetization vector
in the xy plane is wound into
a helix directed along y axis.

Phases are ‘locked in’ once
the blip is over.

y
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θ (y) = υ(y) τ   = γ Bo Δy (Gy τ)

The bigger the gradient blip area, 
the tighter the helix 

y

small blip medium blip large blip

Gy
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What have you measured?
Consider 2 samples:

un
ifo

rm
 w

at
er 1 cm

signal is as big as if no gradientno signal observed
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10 mm

kx

ky

1/10 mm

1/5mm

1/2.5mm

1/1.2mm = 1/Resolution

Measurement intensity at a spatial frequency...
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kx

ky
1 / Resx

1 / FOVx

FOVx = matrix * Resx

Fourier transform
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Sample 3 points in kspace

More efficient!

t

kx

1/10 mm

1/5mm

1/2.5mm

1/1.2mm = 1/Resolution

t
Gy

Gy

Frequency and phase encoding are the same principle!
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Conventional “Spin-warp” encoding

“slice select”

“phase enc”

“freq. enc”
(read-out)

RF

t
S(t)

t
Gz t
Gy

Gx t

t

kx

ky

one excitation, one line of kspace...

a1

a2
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Image encoding,

“Journey through
kspace”

The Movie…
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kx

ky
1 / Resx

1 / FOVx

FOVx = matrix * Resx

Fourier transform
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Conventional “Spin-warp” encoding

“slice select”

“phase enc”

“freq. enc”
(read-out)

RF

t
S(t)
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Gy
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one excitation, one line of kspace...

a1

a2
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“Echo-planar” encoding

RF
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(no
grads)
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kx

ky

one excitation, many lines of kspace...

etc...

T2*

T2*
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Bandwidth is asymmetric in EPI

kx

ky

• Adjacent points in kx have short 
Δt = 5 us (high bandwidth)

• Adjacent points along ky are taken
with long Δt (= 500us). (low bandwidth)

The phase error (and thus distortions) are 
in the phase encode direction.
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RF t
Gz t
Gy

Gx

t

esp = 500 us for whole body grads,  readout length = 32 ms
esp = 270us for head gradients, readout length = 17 ms

Characterization of EPI performance
length of readout train for given resolution
or echo spacing (esp) or freq of readout…

‘echo spacing’ (esp)
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What is important in EPI performance?

Short image encoding time.

Parameters related to total encoding time:
1) echo spacing.
2) frequency of readout waveform.

Key specs for achieving short encode times:
1) gradient slew rate.
2) gradient strength.
3) ability to ramp sample.

Good shimming (second order shims)
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Susceptibility in MR

The good.

The bad.

The ugly.
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Enemy #1 of EPI: 
local susceptibility gradients

Bo field maps in the head
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Enemy #1 of EPI: 
local susceptibility gradients

Bo field maps in the head
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What do we mean by “susceptibility”?

In physics, it refers to a material’s tendency to 
magnetize when placed in an external field.

In MR, it refers to the effects of magnetized 
material on the image through its local 
distortion of the static magnetic field Bo.
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Susceptibility effects occur 
near magnetically dis-similar 
materials

Field disturbance around 
air surrounded by water 
(e.g. sinuses)

Field map 
(coronal image) 

1.5T

Bo

Ping-pong ball in water…
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Bo map in head: it’s the air tissue 
interface…

Sagittal Bo field maps at 3T
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Susceptibility field (in Gauss) 
increases w/ Bo

1.5T 3T 7T

Ping-pong ball in H20:
Field maps (ΔTE = 5ms), black lines 
spaced by 0.024G (0.8ppm at 3T)
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Other Sources of Susceptibility You 
Should Be Aware of…

Those fillings might be a problem…
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Local susceptibility 
gradients: 2 effects

1) Local dephasing of the signal (signal 
loss) within a voxel, mainly from thru-
plane gradients

2) Local geometric distortions, (voxel
location improperly reconstructed) 
mainly from local in-plane gradients.
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1) Non-uniform Local Field 
Causes Local Dephasing

Sagittal Bo field map at 3T 5 water 
protons in 
different 
parts of the 
voxel…

z

slowest

fastestx

y

z
90°

T = 0 T = TE
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Local susceptibility gradients: 
thru-plane dephasing in grad echo EPI

Bad for thick slice above frontal sinus…

3T
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1mm isotropic 
TE=30ms, GRAPPA =2

6/8 part-Fourier

Minimal OFC drop-out issues with 3T 1mm isotropic

Solution: high resolution

3T 32ch EPI
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Thru-plane dephasing gets worse at 
longer TE

3T,  TE = 21, 30, 40, 50, 60ms
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Problem #2 Susceptibility Causes 
Image Distortion in EPI

Field near 
sinus

To encode the image, we control 
phase evolution as a function of 
position with applied gradients.

Local suscept. Gradient causes 
unwanted phase evolution.  

The phase encode error builds up 
with time.  Δθ = γ Blocal Δt

y

y
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Susceptibility Causes Image Distortion

Field near 
sinus

y

y

Conventional grad. echo, 
Δθ α encode time α 1/BW
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Susceptibility in EPI can give either a 
compression or expansion

Altering the direction kspace is 
transversed causes either local 
compression or expansion.

choose your poison…

3T whole body gradients
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Susceptibility Causes Image Distortion

Field near 
sinus

z

Echoplanar Image, 
Δθ α encode time α 1/BW

Encode time = 34, 26, 22, 17ms
3T head gradients
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EPI and Spirals

kx

ky

Gx

Gy

kx

ky

Gx

Gy
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EPI Spirals
Susceptibility: distortion, blurring,

dephasing dephasing

Eddy currents: ghosts blurring

k = 0 is sampled: 1/2 through 1st

Corners of kspace: yes no

Gradient demands: very high pretty high
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B0

Nasal Sinus
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B0

Nasal Sinus + mouth shim
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Effect of Ear & Mouth Shim on EPI

B0

Courtesy of Peter Jezzard. Used with permission.
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Acquisition:

With fast gradients, add parallel imaging

SM
A

SH

SEN
SE

Reconstruction:

Folded datasets
+

Coil sensitivity 
maps

Reduced k-space 
sampling

{

Folded images in
each receiver channel

FOV
k π2

=Δ
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Using the detector array to encode image
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90 Channel
Uncombined
Images
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Parallel acquisition: noise penalties
Calculating the g-factor map

full k
accel

SNR
SNR

G R
−=

Rate = 4
Gmax=2.17

map of 1/G

noise correlation matrix

coil sensitivity profiles
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1/G-factor Maps, 3 Tesla
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1/G-factor, 2D Acceleration
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3D encoding power of the array: 
eigenmodes of the sensitivity maps

MGH brain arrays

Analysis following:
Univ. Würzburg
Breuer et al.
ISMRM 2005 p2668

The 90ch coil
still has significant 
components over 32ch.
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Fast gradients are the foundation, but EPI
still suffers distortion

(iPAT) GRAPPA for EPI
susceptibility

3T Trio, MRI Devices Inc. 8 channel array
b=1000 DWI images

iPAT (GRAPPA) = 0, 2x, 3x
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4 fold acceleration of single shot sub-
millimeter SE-EPI: 23 channel array

23 Channel array at 1.5T

With and without 4x Accel.

Single shot EPI,
256x256, 230mm FOV
TE = 78ms

Encoding with RF…



Extending the phased array to more 
channels:
23 channel “Bucky” array for 1.5T
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9 Fold GRAPPA acceleration 3D 
FLASH

23 Channel array at 1.5T
Can speed up encoding by 
an order of magnitude!

9 minute scan down to 1 minute…

3D Flash, 1mm x 1mm x 1.5mm, 256x256x128
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Triantafyllou, Hinds, MIT

3T Retinotopic mapping

32 channel coil improves fMRI

1 run 3 run 5 run 1 run

12 channel coil 32 channel coil
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Graham Wiggins

90 ch 1.5T 96 ch 3T



3T SNR Maps
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agn

3T SNR Profiles

Order of 
magnitude!

Position        

SN
R
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Questions, comments to:

Larry Wald


	MR physics and safety� for fMRI
	  Fast MR Imaging�Techniques
	Why fast imaging
	Magnetization vector durning MR
	Review of Image encoding,�journey through kspace
	Aside: Magnetic field gradient
	Step two: encode spatial info. �in-plane
	How does blipping on a grad. encode�spatial info?
	How does blipping on a grad. encode�spatial info?
	How does blipping on a grad. encode�spatial info?
	The bigger the gradient blip area, �the tighter the helix 
	What have you measured?
	Sample 3 points in kspace 
	Image encoding,���“Journey through�kspace”���The Movie…
	What is important in EPI performance?
	Susceptibility in MR
	What do we mean by “susceptibility”?
	Susceptibility field (in Gauss) increases w/ Bo
	Other Sources of Susceptibility You Should Be Aware of…
	1) Non-uniform Local Field Causes Local Dephasing
	 3T 32ch EPI
	Problem #2 Susceptibility Causes �Image Distortion in EPI
	Susceptibility Causes Image Distortion
	Susceptibility in EPI can give either a compression or expansion
	Susceptibility Causes Image Distortion
	Effect of Ear & Mouth Shim on EPI
	With fast gradients, add parallel imaging
	90 Channel�Uncombined�Images
	Parallel acquisition: noise penalties�Calculating the g-factor map
	1/G-factor Maps, 3 Tesla
	1/G-factor, 2D Acceleration
	3D encoding power of the array: eigenmodes of the sensitivity maps
	(iPAT) GRAPPA for EPI susceptibility
	Extending the phased array to more channels:�23 channel “Bucky” array for 1.5T
	3T SNR Maps
	Questions, comments to:



