MIT OpenCourseWare http://ocw.mit.edu

HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Harvard-MIT Division of Health Sciences and Technology HST.582J: Biomedical Signal and Image Processing, Spring 2007

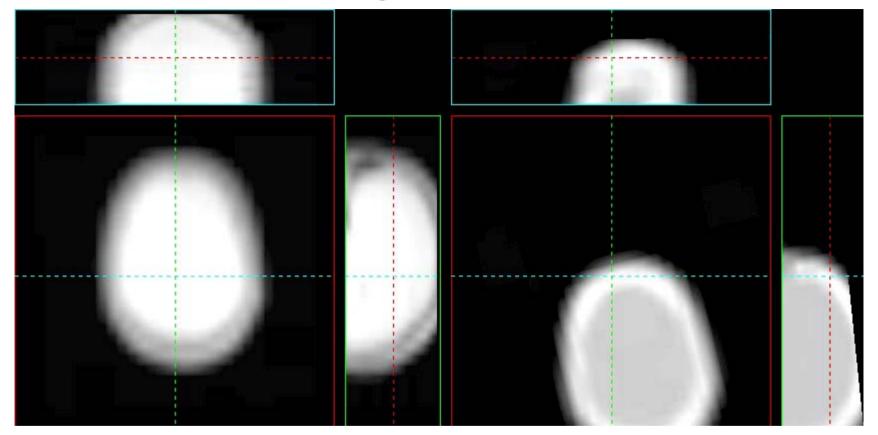
Course Director: Dr. Julie Greenberg

# Medical Image Registration II

HST 6.555

#### Lilla Zöllei and William Wells

## CT-MR registration movie



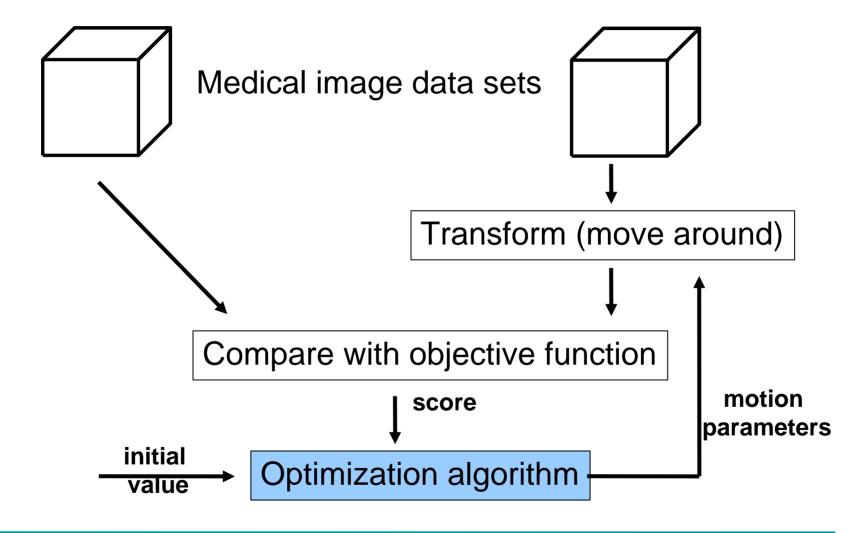
From: Wells, W. M., et al. "Multi-modal Volume Registration by Maximization of Mutual Information." *Medical Image Analysis* 1, no. 1 (March 1996): 35-51.

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

### Roadmap

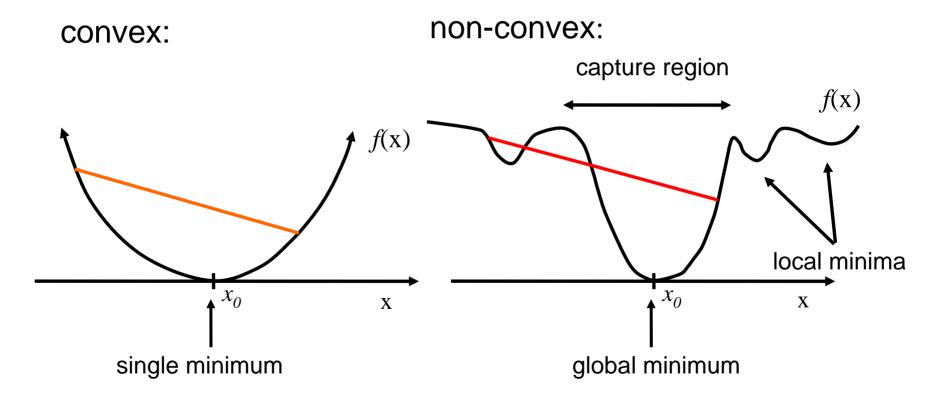
- Data representation
- Transformation types
- Objective functions
  - Feature/surface-based
  - ✓ Intensity-based
- Optimization methods
- Current research topics

### Medical Image Registration



## Optimization -- terminology

find x that minimizes f(x)



# Optimization (for registration) (1)

- Goal: find x that optimizes f(x)
  - do it quickly, cheaply, in small memory; (or evaluate f as few times as possible)
- Parameter recovery: "search" for solution
  - Standard mathematical function (with T dependency) to be optimized
    - use only function evaluations
    - use gradient calculations (more guidance, but costly)
- Based upon prior information:
  - $\Box$  constrained, e.g.:  $x_1 \le x \le x_2$
  - unconstrained

# Optimization (for registration) (2)

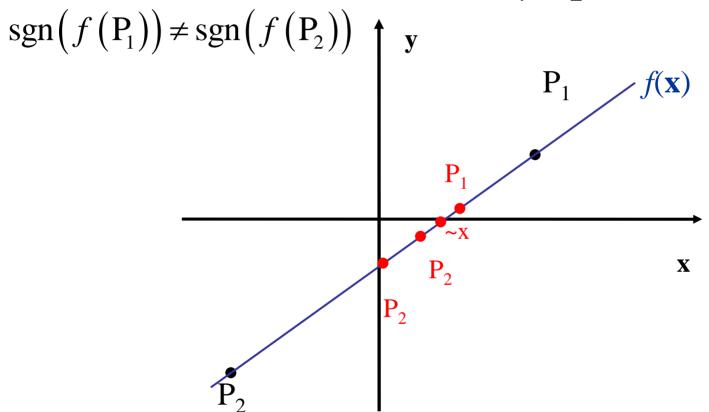
- No guarantees about global extremum
  - Local extrema:
    - sometimes sufficient\*\*
    - find local extrema from a wide variety of starting points; choose the best
    - perturb local extremum and see whether we return
  - Ambitious algorithms:
    - simulated annealing methods
    - genetic algorithms

### Search Algorithms

- 1D solutions minimum bracketing is possible
  - Golden Section Search
  - Brent's Method
  - Steepest Descent
- Multi-dimension initial guess is important!
  - Downhill Simplex (Nelder & Mead)
  - Direction Set Methods
    - Coordinate Descent
    - Powell's Method
  - Gradient Methods
    - Conjugate gradient methods

# Root finding by bisection

Root-bracketing by two points: (P<sub>1</sub>, P<sub>2</sub>)



### Minimization of convex function

Minimum bracketing in  $(P_1, P_2)$ :  $f(\mathbf{x})$  $P_1 < P_3 < P_2$  $f(P_3) < f(P_1)$  $f(P_3) < f(P_2)$  $P_3$ P<sub>3</sub>: best current estimate of X the location of the minimum  $\mathbf{X}$ 

### Golden Section Search

### Minimization strategy:

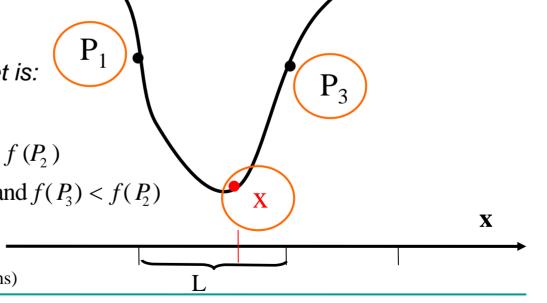
- □ (i) select the larger of  $\overline{P_1P_3}$ ,  $\overline{P_3P_2}$ → assign this interval to be L
- □ (ii) position x in L s.t.

$$\frac{\left\|\overline{P_3x}\right\|}{\|L\|} = \frac{\left(3 - \sqrt{5}\right)}{2} \approx .38197^*$$

(iii) new bracketing triplet is:

$$(P_1, x, P_3)$$
 if  
 $f(x) < f(P_1)$  and  $f(x) < f(P_2)$ 

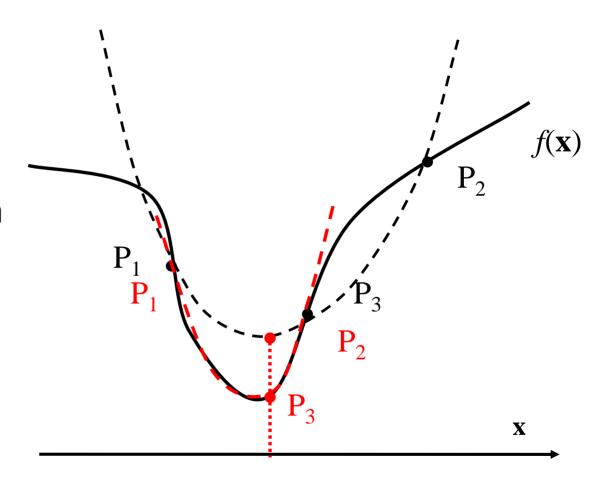
$$(x, P_3, P_2)$$
 if  $f(P_3) < f(x)$  and  $f(P_3) < f(P_2)$ 



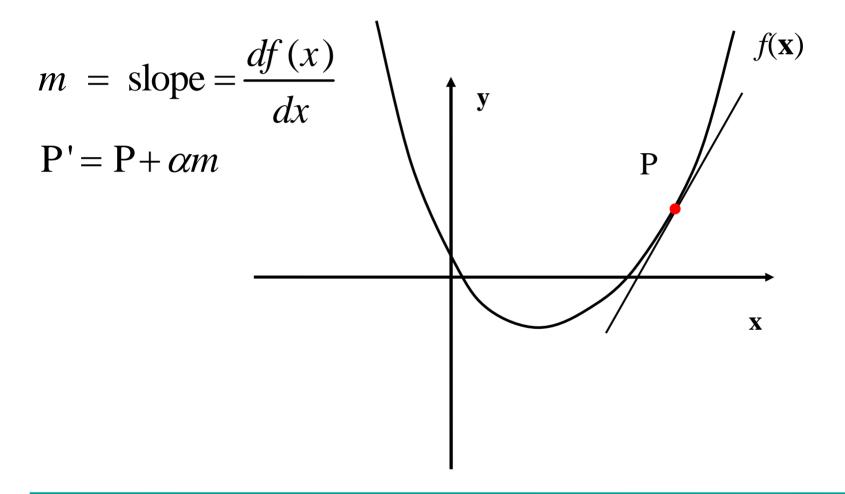
\*golden mean / golden section (Pythagoreans)

### Brent's Method

- Minimum bracketing
- Parabolic interpolation



### Gradient Descent



## Downhill Simplex Method (1)

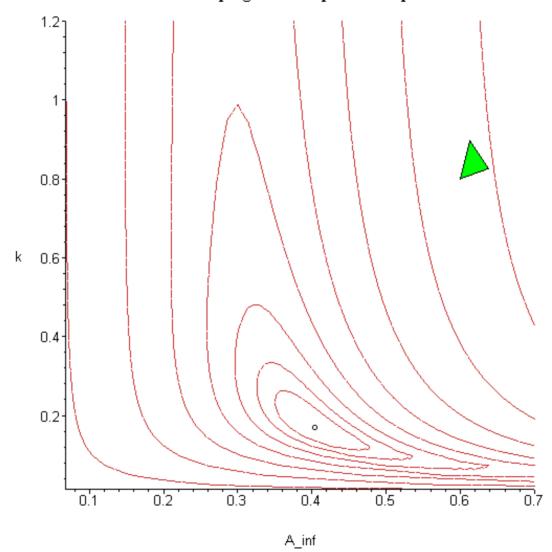
- due to Nelder and Mead\*
- self-contained; no 1D line minimization
- only function evaluations, no derivatives
- not efficient in terms of number of function evaluations, but easy-to-implement
- geometrical naturalness
- <u>useful:</u> when f is non-smooth or when derivatives are impossible to find

Nelder, J.A, and Mead, R. 1965, Computer Journal, vol. 7, pp. 308-13.

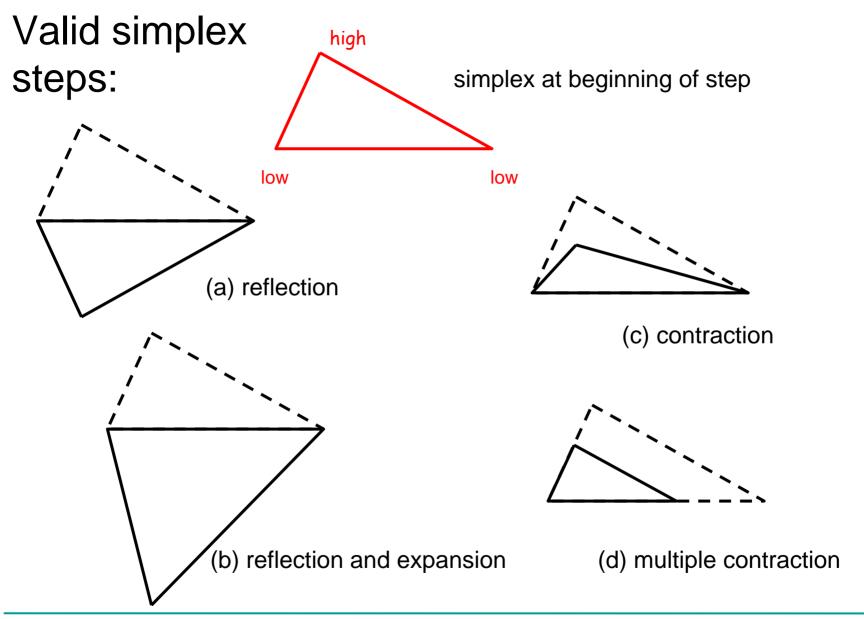
## Downhill Simplex Method (2)

- simplex: geometrical figure; in N dimensions, (N+1) points/vertices
  - e.g.: in 2D: triangle, in 3D: tetrahedron
  - non-degenerate! (encloses a finite Ndimensional volume)
- starting guess ((N+1) points)
  - $\mathbf{P_0}$  and  $\mathbf{P_i} = \mathbf{P_0} + \lambda \mathbf{e_i}$   $\mathbf{e_i}$ : unit vectors;
    - λ: constant, guess of characteristic length scale





Courtesy of E. G. Romero-Blanco and J. F. Ogilvie. Used with permission.



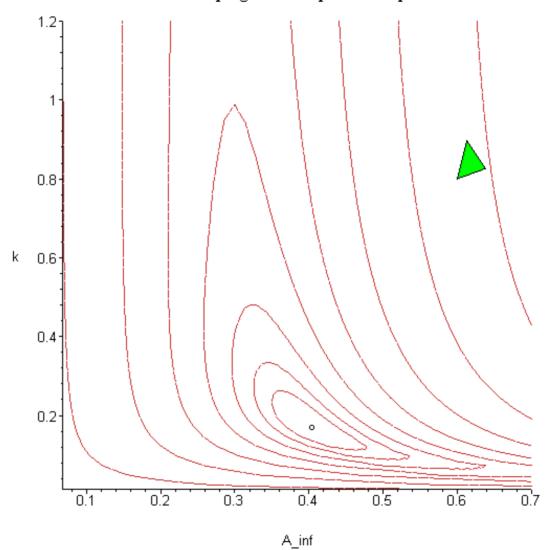
## Downhill Simplex Method (3)

- possible moves (from previous figure):
  - reflection (conserving volume of the simplex)
  - reflection and expansion
  - contraction
  - multiple contraction
- termination criterion
  - use threshold on moved vector distance
  - or threshold on function value change
- restart strategy
  - needed as even a single anomalous step can fool the search algorithm

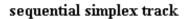
### Implementation details

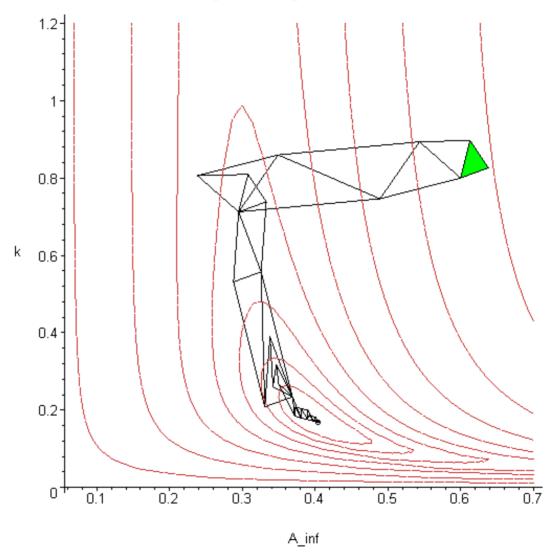
- fminsearch in MATLAB
- build initial simplex
- 2. do reflections, expand if appropriate
- 3. in "valley floor" contract transverse
  - ooze down valley
- works well in some medical registration methods
- has implicit coarse-to-fine behavior

#### animation of progress of sequential simplex



Courtesy of E. G. Romero-Blanco and J. F. Ogilvie. Used with permission.



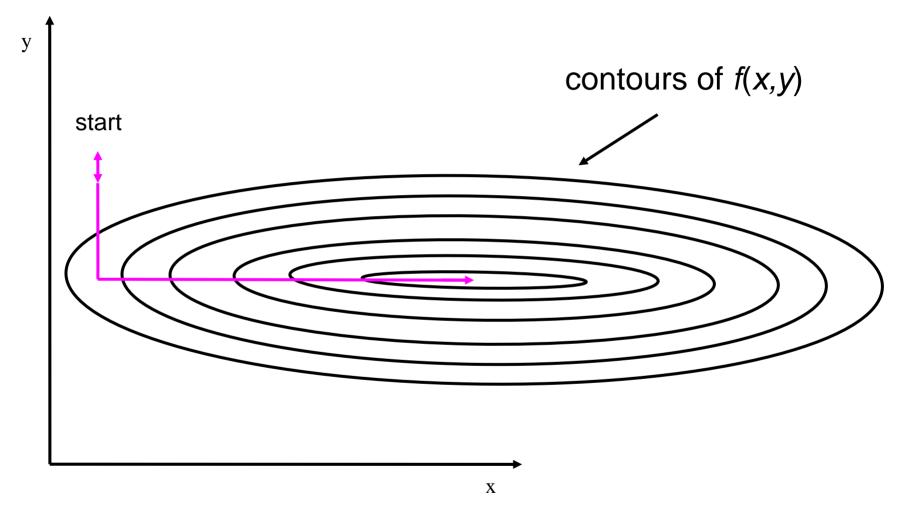


Courtesy of E. G. Romero-Blanco and J.F. Ogilvie. Used with permission.

### Direction Set Methods

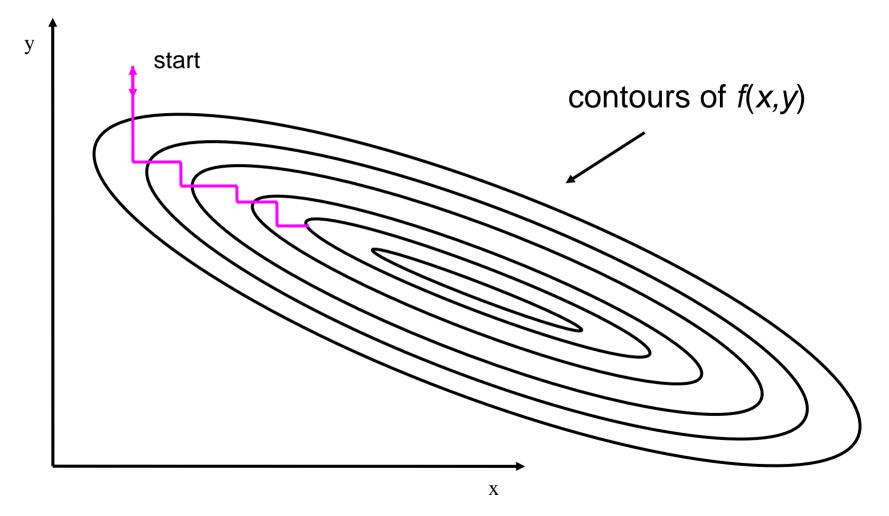
- Successive line minimizations
- No explicit gradient calculation
- How to select the best set of directions to follow?
  - simple example: follow the coordinate directions
  - direction set methods: compute "good" or noninterfering (conjugate) directions

### Follow the coordinate directions



Ideal situation: only two steps are enough to locate the minimum

### Follow the coordinate directions



In general: can be very inefficient; large number of steps can be required to find the minimum.

## Conjugate Directions

- non-interfering directions: subsequent minimizations should not spoil previous optimization results
- goal: come up with a set of N linearly independent, mutually conjugate directions
  - ⇒ N line minimizations will achieve the minimum of a quadratic form

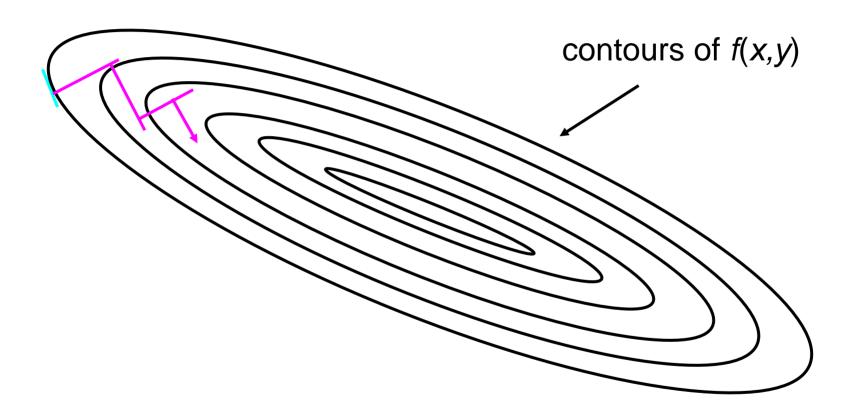
### Powell's Method

- N(N+1) line minimizations to achieve the minimum
- possible problem with linear dependence after update
  - □ fix
    - re-initialize the set of directions to the basis vectors
    - few good directions (instead of N conjugate ones)

### Conjugate Gradient Methods

- gradient calculation is needed
- order N separate line minimizations
- computational speed improvement
  - Steepest Descent method
    - right angle turns at all times
  - Conjugate Direction methods

### Steepest Descent method



Steepest descent method – still a large number of steps is required to find the minimum.

See <a href="http://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/node57.html">http://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/node57.html</a>

## Conjugate Gradients method



Conjugate gradients method - only two steps are required to find the minimum.

See http://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/node57.html

### Simulated Annealing

- exploits an analogy between the way in which a metal cools and freezes into a minimum energy crystalline structure (the annealing process) and the search for a minimum in a more general system
- employs a random search accepting (with a given probability) both changes that decrease and increase the objective function
- successful at finding global optima among a large numbers of undesired local extrema

## Genetic Algorithm

- works very well on mixed (continuous and discrete), combinatorial problems; less susceptible to getting 'stuck' at local optima than gradient search methods
- tends to be computationally expensive
- represents solution to the problem as a genome (or chromosome); creates a population of solutions and apply genetic operators (mutation, crossover) to evolve the solutions in order to find the best one(s).
- most important aspects of using genetic algorithms are
  - (1) definition of the objective function
  - (2) definition and implementation of the genetic representation
  - □ (3) definition and implementation of the genetic operators
- http://lancet.mit.edu/~mbwall/presentations/IntroToGAs/

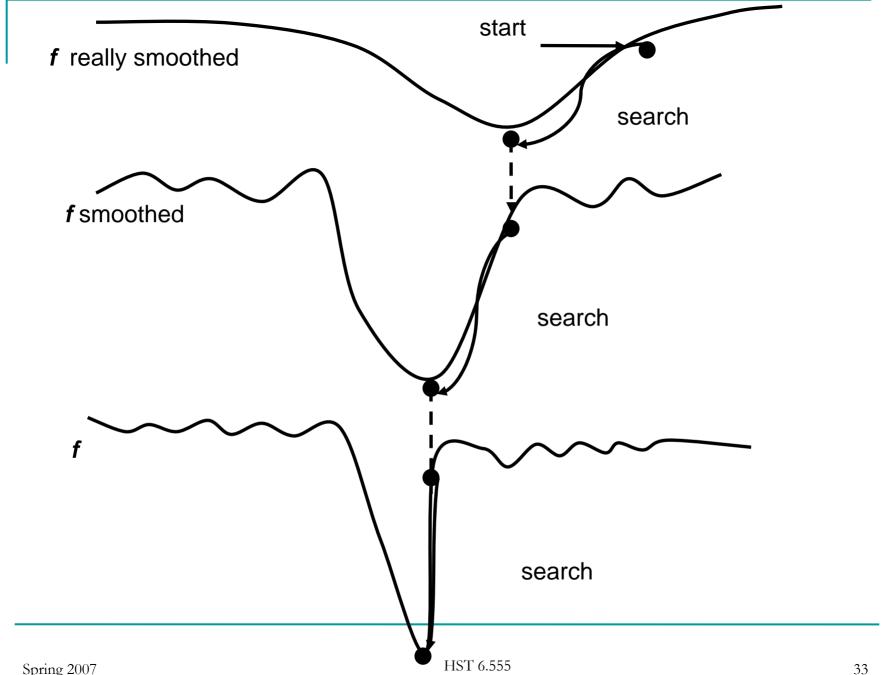
### Coarse-to-Fine Strategy

### Technique:

- $\square$  smooth objective function  $f_N$  (e.g.: blur with Gaussian)
- ullet optimize smoothed version (use result as start value for original objective  $f_N$ )

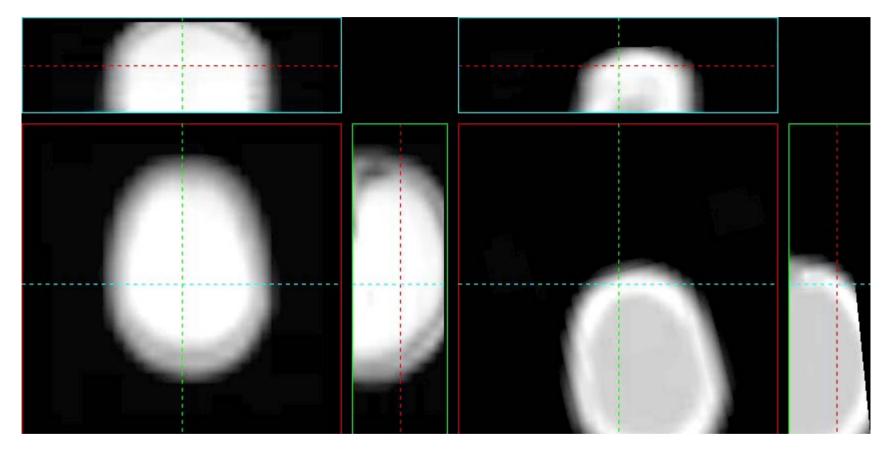
### Advantages:

- avoiding local extrema
- speed up computations



Spring 2007

### CT-MR registration movie



From: Wells, W. M., et al. "Multi-modal Volume Registration by Maximization of Mutual Information." *Medical Image Analysis* 1, no. 1 (March 1996): 35-51.

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

### More examples

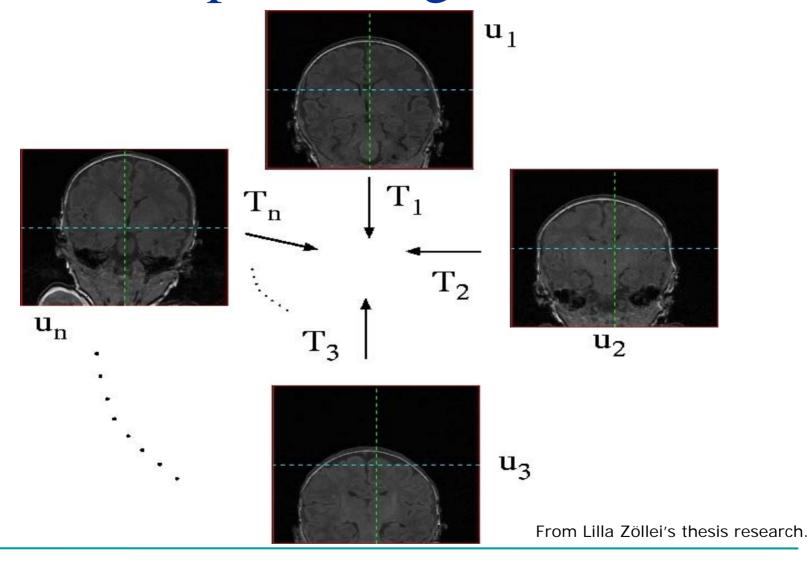
Numerical Recipes in "C" http://www.nrbook.com/nr3/

### Current Research topics

- group-wise (vs. pair-wise) registration
- Diffusion Tensor (DT) MRI alignment
- surface-based (vs volumetric) alignment

- Open questions: tumor growth modeling, structural – functional alignment, ....
- Registration evaluation and validation

#### Group-wise registration

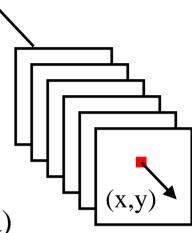


## Group-wise registration styles

- Template-dependent
  - Fixed template
    - Arbitrary member of the population
    - Pre-defined atlas
  - Online computed template
    - Sequential pair-wise alignment to evolving "mean"
- Template-free
  - Simultaneous

## The Congealing method

• <u>Def</u>.: simultaneous alignment of each of a set of images to each other

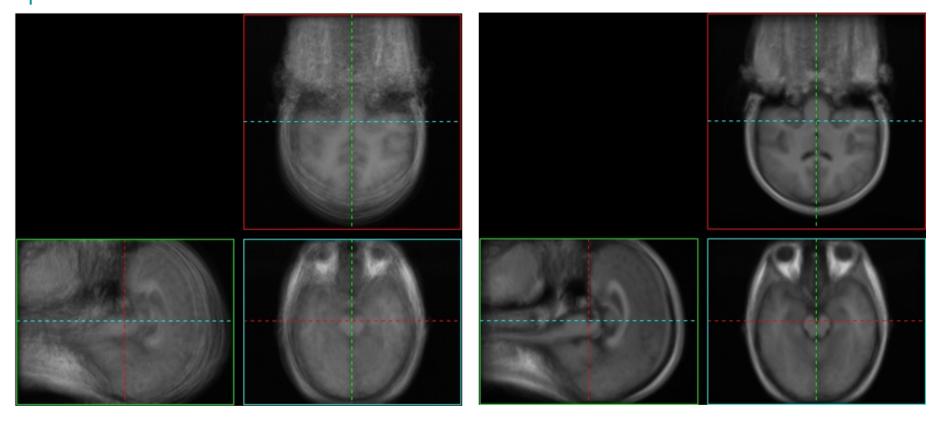


- Applications:
  - Handwritten digit recognition (binary data)
  - Preliminary baby brain registration (binary data)
  - Bias removal from MRI images

## Advantages of Congealing

- Computational advantages
- Can accommodate very large data sets
- Can accommodate multi-modal data
- Robust to noise and imaging artifacts
- No single central tendency assumption

#### Adult brain data set - mean volumes



**Unaligned** input data sets

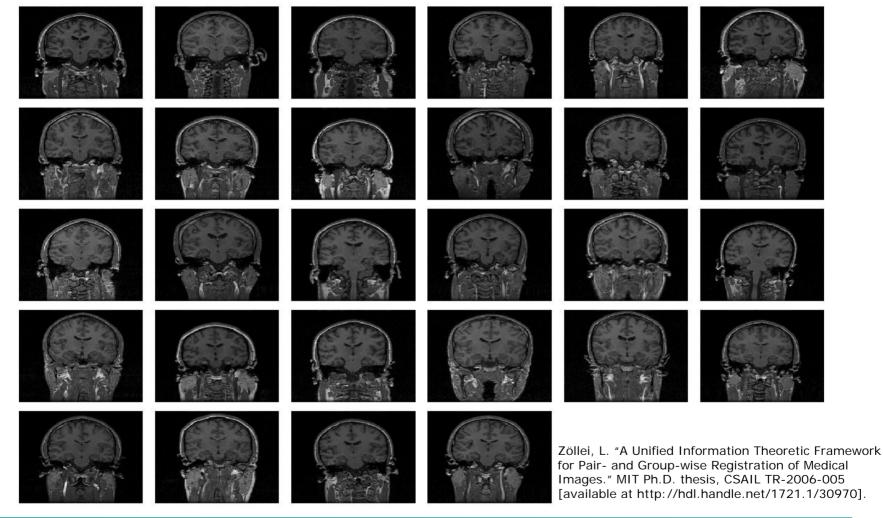
Aligned input data sets

Data set: 28 T1-weighted MRI; [256x256x124] with (.9375, .9375, 1.5) mm<sup>3</sup> voxels

Experiment: 2 levels; 12-param. affine; N = 2500; iter = 150; time = 1209 sec!!

Zöllei, L. "A Unified Information Theoretic Framework for Pair- and Group-wise Registration of Medical Images." MIT Ph.D. thesis, CSAIL TR-2006-005 [available at http://hdl.handle.net/1721.1/30970].

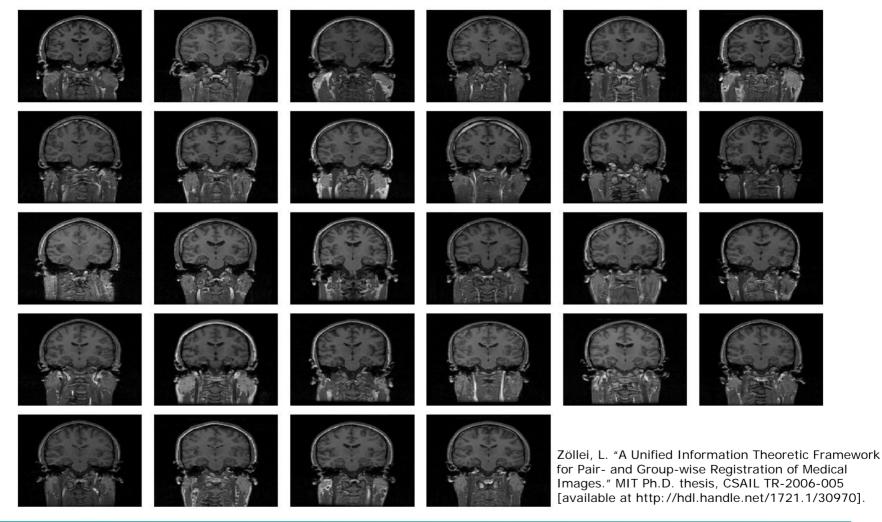
#### Central coronal slices



#### **Unaligned** input

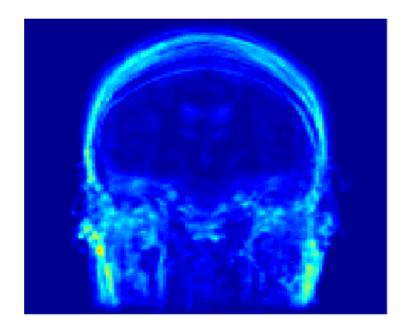
Spring 2007
HST 6.555
42
Site and Hills Töller and William Wells, Course materials for HST 521 / 4 5551 / 14 4541. Riemadical Signal and Image Processing, Spring 2007

#### Central coronal slices

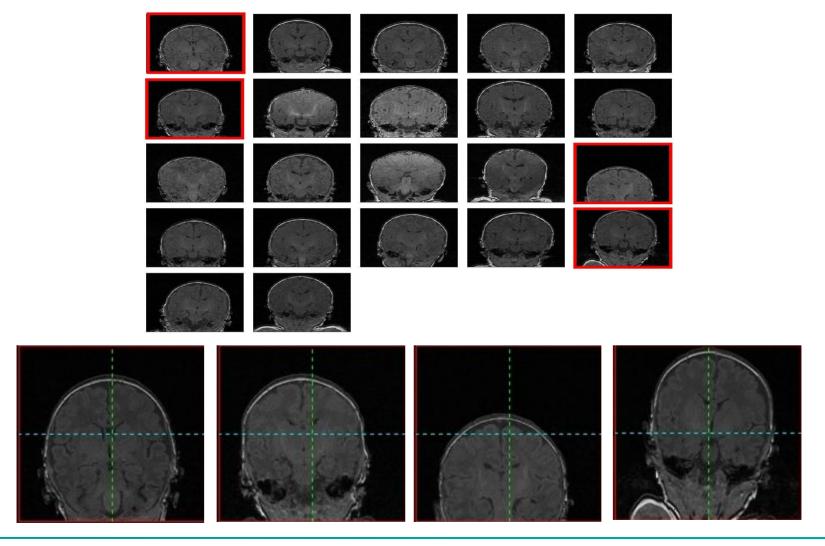


#### **Aligned** input

# Variance volume - during registration

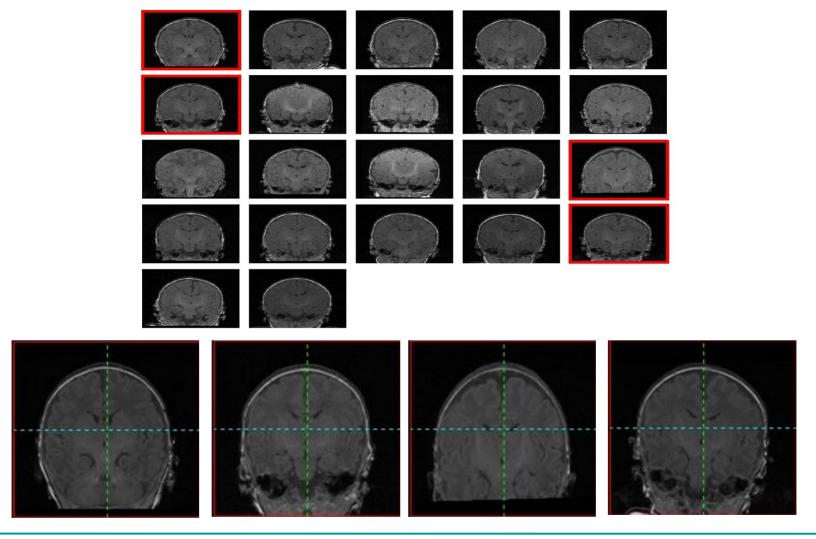


#### Baby brain data set – central slices



Zöllei, L. "A Unified Information Theoretic Framework for Pair- and Group-wise Registration of Medical Images." MIT Ph.D. thesis, CSAIL TR-2006-005 [available at http://hdl.handle.net/1721.1/30970].

#### Baby brain data set – central slices



Zöllei, L. "A Unified Information Theoretic Framework for Pair- and Group-wise Registration of Medical Images." MIT Ph.D. thesis, CSAIL TR-2006-005 [available at http://hdl.handle.net/1721.1/30970]. HST 6.555

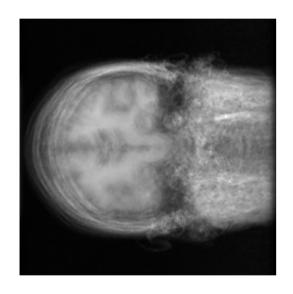
Spring 2007 Cite as: Lilla Zöllei and William Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

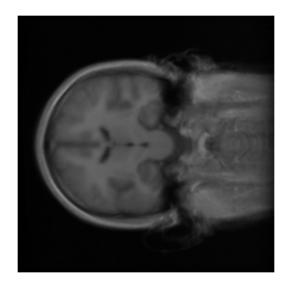
46

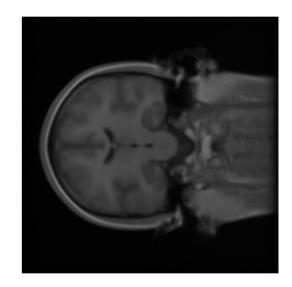
#### <del>Very large data set</del>



#### Affine + B-splines Deformation







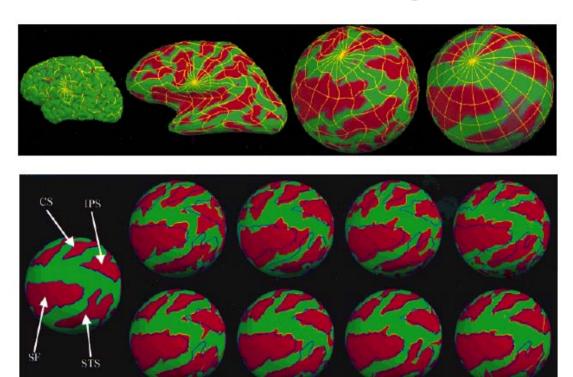
Courtesy of Serdar K Balci and Kinh Tieu. Used with permission.

#### DT MRI alignment

Figure 2 from this article (sequence of eight images) removed due to copyright restrictions.

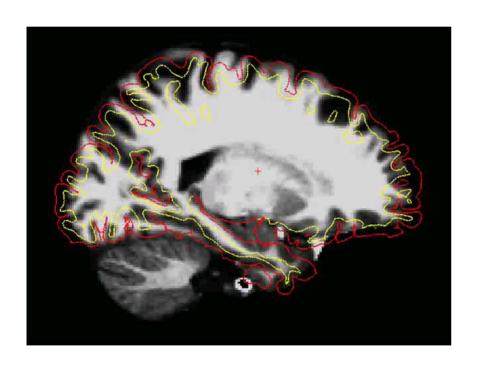
O'Donnell, L. J., et al.: *High-Dimensional White Matter Atlas Generation and Group Analysis* MICCAI, 243-251, 2006.

## Surface-based alignment



From: Fischl, B., et al. "High-resolution Inter-subject Averaging and a Coordinate System for the Cortical Surface." *Human Brain Mapping*, 8:272-284. Copyright © 1999. Reprinted with permission of Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc.

## Combined surface-based and volumetric alignment



Images removed due to copyright restrictions.

Two brain MRI images from Fig 3 in Postelnicu, Gheorghe,
Lilla Zollei, Rahul Desikan, and Bruce Fischl. "Geometry
Driven Volumetric Registration." *LNCS* 4584 (2007): 243–251.

Courtesy of Gheorghe Postelnicu. Used with permission.

### Further open questions:

- tumor growth modeling
- structural functional alignment (MRI-fMRI)
- population comparison

. . . .

## Registration evaluation and validation

 Retrospective Image Registration Evaluation Project (Vanderbilt University, Nashville, TN) http://www.vuse.vanderbilt.edu/~image/registration/

 Non-Rigid Image Registration Evaluation Program (NIREP); University of Iowa

http://www.nirep.org

#### END