MIT OpenCourseWare http://ocw.mit.edu

HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Harvard-MIT Division of Health Sciences and Technology HST.582J: Biomedical Signal and Image Processing, Spring 2007

Course Director: Dr. Julie Greenberg

Medical Image Registration II

HST 6.555

Lilla Zöllei and William Wells

CT-MR registration movie

From: Wells, W. M., et al. "Multi-modal Volume Registration by Maximization of Mutual Information." *Medical Image Analysis* 1, no. 1 (March 1996): 35-51.

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Roadmap

- Data representation
- Transformation types
- Objective functions
 - Feature/surface-based
 - ✓ Intensity-based
- Optimization methods
- Current research topics

Medical Image Registration

Optimization -- terminology

find x that minimizes f(x)

Optimization (for registration) (1)

- Goal: find x that optimizes f(x)
 - do it quickly, cheaply, in small memory; (or evaluate f as few times as possible)
- Parameter recovery: "search" for solution
 - Standard mathematical function (with T dependency) to be optimized
 - use only function evaluations
 - use gradient calculations (more guidance, but costly)
- Based upon prior information:
 - \Box constrained, e.g.: $x_1 \le x \le x_2$
 - unconstrained

Optimization (for registration) (2)

- No guarantees about global extremum
 - Local extrema:
 - sometimes sufficient**
 - find local extrema from a wide variety of starting points; choose the best
 - perturb local extremum and see whether we return
 - Ambitious algorithms:
 - simulated annealing methods
 - genetic algorithms

Search Algorithms

- 1D solutions minimum bracketing is possible
 - Golden Section Search
 - Brent's Method
 - Steepest Descent
- Multi-dimension initial guess is important!
 - Downhill Simplex (Nelder & Mead)
 - Direction Set Methods
 - Coordinate Descent
 - Powell's Method
 - Gradient Methods
 - Conjugate gradient methods

Root finding by bisection

Root-bracketing by two points: (P₁, P₂)

Minimization of convex function

Minimum bracketing in (P_1, P_2) : $f(\mathbf{x})$ $P_1 < P_3 < P_2$ $f(P_3) < f(P_1)$ $f(P_3) < f(P_2)$ P_3 P₃: best current estimate of X the location of the minimum \mathbf{X}

Golden Section Search

Minimization strategy:

- □ (i) select the larger of $\overline{P_1P_3}$, $\overline{P_3P_2}$ → assign this interval to be L
- □ (ii) position x in L s.t.

$$\frac{\left\|\overline{P_3x}\right\|}{\|L\|} = \frac{\left(3 - \sqrt{5}\right)}{2} \approx .38197^*$$

(iii) new bracketing triplet is:

$$(P_1, x, P_3)$$
 if
 $f(x) < f(P_1)$ and $f(x) < f(P_2)$

$$(x, P_3, P_2)$$
 if $f(P_3) < f(x)$ and $f(P_3) < f(P_2)$

*golden mean / golden section (Pythagoreans)

Brent's Method

- Minimum bracketing
- Parabolic interpolation

Gradient Descent

Downhill Simplex Method (1)

- due to Nelder and Mead*
- self-contained; no 1D line minimization
- only function evaluations, no derivatives
- not efficient in terms of number of function evaluations, but easy-to-implement
- geometrical naturalness
- <u>useful:</u> when f is non-smooth or when derivatives are impossible to find

Nelder, J.A, and Mead, R. 1965, Computer Journal, vol. 7, pp. 308-13.

Downhill Simplex Method (2)

- simplex: geometrical figure; in N dimensions, (N+1) points/vertices
 - e.g.: in 2D: triangle, in 3D: tetrahedron
 - non-degenerate! (encloses a finite Ndimensional volume)
- starting guess ((N+1) points)
 - $\mathbf{P_0}$ and $\mathbf{P_i} = \mathbf{P_0} + \lambda \mathbf{e_i}$ $\mathbf{e_i}$: unit vectors;
 - λ: constant, guess of characteristic length scale

Courtesy of E. G. Romero-Blanco and J. F. Ogilvie. Used with permission.

Downhill Simplex Method (3)

- possible moves (from previous figure):
 - reflection (conserving volume of the simplex)
 - reflection and expansion
 - contraction
 - multiple contraction
- termination criterion
 - use threshold on moved vector distance
 - or threshold on function value change
- restart strategy
 - needed as even a single anomalous step can fool the search algorithm

Implementation details

- fminsearch in MATLAB
- build initial simplex
- 2. do reflections, expand if appropriate
- 3. in "valley floor" contract transverse
 - ooze down valley
- works well in some medical registration methods
- has implicit coarse-to-fine behavior

animation of progress of sequential simplex

Courtesy of E. G. Romero-Blanco and J. F. Ogilvie. Used with permission.

Courtesy of E. G. Romero-Blanco and J.F. Ogilvie. Used with permission.

Direction Set Methods

- Successive line minimizations
- No explicit gradient calculation
- How to select the best set of directions to follow?
 - simple example: follow the coordinate directions
 - direction set methods: compute "good" or noninterfering (conjugate) directions

Follow the coordinate directions

Ideal situation: only two steps are enough to locate the minimum

Follow the coordinate directions

In general: can be very inefficient; large number of steps can be required to find the minimum.

Conjugate Directions

- non-interfering directions: subsequent minimizations should not spoil previous optimization results
- goal: come up with a set of N linearly independent, mutually conjugate directions
 - ⇒ N line minimizations will achieve the minimum of a quadratic form

Powell's Method

- N(N+1) line minimizations to achieve the minimum
- possible problem with linear dependence after update
 - □ fix
 - re-initialize the set of directions to the basis vectors
 - few good directions (instead of N conjugate ones)

Conjugate Gradient Methods

- gradient calculation is needed
- order N separate line minimizations
- computational speed improvement
 - Steepest Descent method
 - right angle turns at all times
 - Conjugate Direction methods

Steepest Descent method

Steepest descent method – still a large number of steps is required to find the minimum.

See http://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/node57.html

Conjugate Gradients method

Conjugate gradients method - only two steps are required to find the minimum.

See http://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/node57.html

Simulated Annealing

- exploits an analogy between the way in which a metal cools and freezes into a minimum energy crystalline structure (the annealing process) and the search for a minimum in a more general system
- employs a random search accepting (with a given probability) both changes that decrease and increase the objective function
- successful at finding global optima among a large numbers of undesired local extrema

Genetic Algorithm

- works very well on mixed (continuous and discrete), combinatorial problems; less susceptible to getting 'stuck' at local optima than gradient search methods
- tends to be computationally expensive
- represents solution to the problem as a genome (or chromosome); creates a population of solutions and apply genetic operators (mutation, crossover) to evolve the solutions in order to find the best one(s).
- most important aspects of using genetic algorithms are
 - (1) definition of the objective function
 - (2) definition and implementation of the genetic representation
 - □ (3) definition and implementation of the genetic operators
- http://lancet.mit.edu/~mbwall/presentations/IntroToGAs/

Coarse-to-Fine Strategy

Technique:

- \square smooth objective function f_N (e.g.: blur with Gaussian)
- ullet optimize smoothed version (use result as start value for original objective f_N)

Advantages:

- avoiding local extrema
- speed up computations

Spring 2007

CT-MR registration movie

From: Wells, W. M., et al. "Multi-modal Volume Registration by Maximization of Mutual Information." *Medical Image Analysis* 1, no. 1 (March 1996): 35-51.

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

More examples

Numerical Recipes in "C" http://www.nrbook.com/nr3/

Current Research topics

- group-wise (vs. pair-wise) registration
- Diffusion Tensor (DT) MRI alignment
- surface-based (vs volumetric) alignment

- Open questions: tumor growth modeling, structural – functional alignment,
- Registration evaluation and validation

Group-wise registration

Group-wise registration styles

- Template-dependent
 - Fixed template
 - Arbitrary member of the population
 - Pre-defined atlas
 - Online computed template
 - Sequential pair-wise alignment to evolving "mean"
- Template-free
 - Simultaneous

The Congealing method

• <u>Def</u>.: simultaneous alignment of each of a set of images to each other

- Applications:
 - Handwritten digit recognition (binary data)
 - Preliminary baby brain registration (binary data)
 - Bias removal from MRI images

Advantages of Congealing

- Computational advantages
- Can accommodate very large data sets
- Can accommodate multi-modal data
- Robust to noise and imaging artifacts
- No single central tendency assumption

Adult brain data set - mean volumes

Unaligned input data sets

Aligned input data sets

Data set: 28 T1-weighted MRI; [256x256x124] with (.9375, .9375, 1.5) mm³ voxels

Experiment: 2 levels; 12-param. affine; N = 2500; iter = 150; time = 1209 sec!!

Zöllei, L. "A Unified Information Theoretic Framework for Pair- and Group-wise Registration of Medical Images." MIT Ph.D. thesis, CSAIL TR-2006-005 [available at http://hdl.handle.net/1721.1/30970].

Central coronal slices

Unaligned input

Spring 2007
HST 6.555
42
Site and Hills Töller and William Wells, Course materials for HST 521 / 4 5551 / 14 4541. Riemadical Signal and Image Processing, Spring 2007

Central coronal slices

Aligned input

Variance volume - during registration

Baby brain data set – central slices

Zöllei, L. "A Unified Information Theoretic Framework for Pair- and Group-wise Registration of Medical Images." MIT Ph.D. thesis, CSAIL TR-2006-005 [available at http://hdl.handle.net/1721.1/30970].

Baby brain data set – central slices

Zöllei, L. "A Unified Information Theoretic Framework for Pair- and Group-wise Registration of Medical Images." MIT Ph.D. thesis, CSAIL TR-2006-005 [available at http://hdl.handle.net/1721.1/30970]. HST 6.555

Spring 2007 Cite as: Lilla Zöllei and William Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

46

Very large data set

Affine + B-splines Deformation

Courtesy of Serdar K Balci and Kinh Tieu. Used with permission.

DT MRI alignment

Figure 2 from this article (sequence of eight images) removed due to copyright restrictions.

O'Donnell, L. J., et al.: *High-Dimensional White Matter Atlas Generation and Group Analysis* MICCAI, 243-251, 2006.

Surface-based alignment

From: Fischl, B., et al. "High-resolution Inter-subject Averaging and a Coordinate System for the Cortical Surface." *Human Brain Mapping*, 8:272-284. Copyright © 1999. Reprinted with permission of Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc.

Combined surface-based and volumetric alignment

Images removed due to copyright restrictions.

Two brain MRI images from Fig 3 in Postelnicu, Gheorghe,
Lilla Zollei, Rahul Desikan, and Bruce Fischl. "Geometry
Driven Volumetric Registration." *LNCS* 4584 (2007): 243–251.

Courtesy of Gheorghe Postelnicu. Used with permission.

Further open questions:

- tumor growth modeling
- structural functional alignment (MRI-fMRI)
- population comparison

. . . .

Registration evaluation and validation

 Retrospective Image Registration Evaluation Project (Vanderbilt University, Nashville, TN) http://www.vuse.vanderbilt.edu/~image/registration/

 Non-Rigid Image Registration Evaluation Program (NIREP); University of Iowa

http://www.nirep.org

END