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Classification

Given

Optimize:
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Binary Hypothesis Testing (Neyman-Pearson) 
(and a “simplification” of the notation)

• 2-Class problems are equivalent to the binary hypothesis 
testing problem.

The goal is estimate which Hypothesis is true (i.e. from 
which class our sample came from).

• A minor change in notation will make the following 
discussion a little simpler.

Probability density models for the 
measurement x depending on which 
hypothesis is in effect.
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• Decision rules are functions which map measurements to 
choices.

• In the binary case we can write it as 

where we need to designate R0 and R1. 

Decision Rules

x

( )0p x( )1p x
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Error Types

x

1R 1R0R

( )0p x( )1p x

• There are 2 types of errors
• A “miss”

• A “false alarm”

II 2

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image
Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY]. 



6.555/HST 582 Apr-07

John W. Fisher 

April 07 HST 582       © John W. Fisher III, 2002-2006 5

Event Types

x

1R 1R0R

( )0p x( )1p x
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Plotting β versus α

• For some decision rule we 
can plot the probability of 
detection versus the 
probability of a false alarm. 
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Receiver Operating Characteristic (ROC) Curve 

• The form of the optimal decision 
function took the form of a 
likelihood ratio.

• This test is optimal in the sense 
that for any setting of γ with a 
resulting PD and PF

– any other decision rule with the 
same PD (or β) has a PF (or α) 
which is higher.

– any other decision rule with the 
same PF (or α) has a PD (or β) 
which is lower.
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• 2-Class problems are equivalent to 
the binary hypothesis testing 
problem.

The goal is estimate which 
Hypothesis is true (i.e. from which 
class our sample came from).

• A minor change in notation will make 
the following discussion a little 
simpler.

Binary Hypothesis Testing (Bayesian) 

Marginal density of X

Conditional probability of the 
hypothesis Hi given X

Prior probabilities of each class

Class-conditional probability density 
models for the measurement x
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The Generative Model

• A random process generates values of Hk, which are 
sampled from the probability mass function pH(H).

• We would like to ascertain the value of Hk, 
unfortunately we don’t observe it directly.

• Fortunately, we observe a related random variable, x.
• From x, we can compute the best estimate of Hk.
• What is the nature of the relationship, and what do we 

mean by best.

( )Hp h ( )| |X H ip x H H=
iH

( )Ĥ x
x
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A Notional 1-Dimensional Classification Example

• So given observations of x, how should select our best 
guess of Hi?

• Specifically, what is a good criterion for making that 
assignment?

• Which Hi should we select before we observe x.

x

( )0p x( )1p x

x

( )Xp x

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image
Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY]. 



6.555/HST 582 Apr-07

John W. Fisher III 6

April 07 HST 582       © John W. Fisher III, 2002-2006 11

Bayes Classifier

• A reasonable criterion for guessing values of H given 
observations of X is to minimize the probability of 
error.

• The classifier which achieves this minimization is the 
Bayes classifier.

x

x

( )Xp x

( )0p x( )1p x
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Probability of Misclassification

• Before we derive the Bayes’ classifier, consider the 
probability of misclassification for an arbitrary
classifier (i.e. decision rule).

– The first step is to assign regions of X, to each class.
– An error occurs if a sample of x falls in Ri and we assume 

hypothesis Hj.

x

1R 1R0R

( )0p x( )1p x
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Probability of Misclassification

• An error is comprised of two events

• These are mutually exclusive events so their joint probability is the 
sum of their individual probabilities

x

1R 1R0R

( )0p x( )1p x
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fMRI example

• Noisy measurements
• Conditional predicted observations
• Quantifiable costs
• Tumor/Gray-White Matter Separation
• Eloquent/Non-Eloquent Cortex Discrimination
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Risk Adjusted Classifiers

Suppose that making one type of 
error is more of a concern than 
making another. For example, it is 
worse to declare H1 when H2 is true 
then vice versa.

• This is captured by the notion of 
“cost”.

• In the binary case this leads to a 
cost matrix.

• The Risk Adjusted Classifier tries 
to minimize the expected “cost”

Derivation
• We’ll simplify by assuming that 

C11=C22=0 (there is zero cost to 
being correct) and that all other 
costs are positive.

• Think of cost as a piecewise 
constant function of X.

• If we divide X into decision regions 
we can compute the expected cost 
as the cost of being wrong times 
the probability of a sample falling 
into that region.
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Risk Adjusted Classifiers

Expected Cost is then

• As in the minimum probability of 
error classifier, we note that all 
terms are positive in the integral, so 
to minimize expected “cost” choose 
R1 to be:

• Alternatively

• If C10=C01 then the risk 
adjusted classifier is equivalent 
to the minimum probability of 
error classifier.

• Another interpretation of 
“costs” is an adjustment to the 
prior probabilities.

• Then the risk adjusted 
classifier is equivalent to the 
minimum probability of error 
classifier with prior 
probabilities equal to P1

adj and 
P0

adj, respectively.
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Okay, so what.

All of this is great. We now know what to do in a few classic cases if 
some nice person hands us all of the probability models.

• In general we aren’t given the models – What do we do?
Density estimation to the rescue.
• While we may not have the models, often we do have a collection of 

labeled measurements, that is a set of {x,Hj}.
• From these we can estimate the class-conditional densities. 

Important issues will be:
– How “close” will the estimate be to the true model.
– How does “closeness” impact on classification performance?
– What types of estimators are appropriate (parametric vs. nonparametric).
– Can we avoid density estimation and go straight to estimating the decision 

rule directly? (generative approaches versus discriminative approaches)

Density Estimation

9
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The Basic Issue

•All of the theory 
and methodology has 
been developed as if 
the model were 
handed to us.
•In practice, that is 
not what happens.
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The Basic Issue

•All of the theory 
and methodology has 
been developed as if 
the model were 
handed to us.
•In practice, that is 
not what happens.
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Even more challenging

•The model may not 
follow some 
convenient form.
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Classification with Model Estimation

Given
labeled
samples
from

Optimize:

11

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image
Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY]. 



6.555/HST 582 Apr-07

John W. F

April 07 HST 582       © John W. Fisher III, 2002-2006 23

Density/Parameter Estimation

• We need to infer a density (or do we?) from a set of labeled 
samples.

• There are essentially 2 styles of density estimation
– Parametric
– Nonparametric

• While theoretical optimality of classifiers assumes known 
generative models, as a practical matter we rarely (if ever) 
know the true source density (or even its form).

• Methods by which we infer the class-conditional densities 
from a finite set of labeled samples.

• The sense in which a density estimate is “good”.
• The difference between estimating a density and a “decision 

rule” for classification.

Primary Estimation Concepts
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Parametric Estimation

• Assume the model has known 
functional form

• Estimate the parameters of 
the function from samples

Experiment (example)
• After tossing a coin 100 

times you observe 56 heads 
and 44 tails.

• What probability model best 
explains our observations?

– We’ll need to define “best”.
– We might want to consider 

our prior 
experience/expectations.

isher III 12
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Some Terms

• X is a set of N independent
samples of an M-dimensional 
random variable.

• When appropriate we’ll 
define a P-dimensional 
parameter vector.

• Denotes that samples are 
drawn from the probability 
density or mass function 
parameterized by θ.

• Denotes the “true” density 
from which samples are 
drawn.
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Some Terms (con’t)

Example:
• X are samples of an M-dimensional 

Gaussian random variable
• The set θ contains the mean vector 

and covariance matrix which 
completely specify the Gaussian 
density.

• P is the number of independent
parameters which consists of M 
(for the mean vector) plus M (for 
the diagonal elements of the 
covariance matrix) plus (M2-M)/2 
(which is half of the off-diagonal 
elements – the other half are the 
same).

• The parameterized (model) density 
is then the Gaussian form with mean 
and covariance as parameters.
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Measures of Goodness (L1)

• The L1 variational distance

– Related to how accurately your model computes the true 
probability of an event for any event A (where RA is the 
region of X which defines the event A)
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Measures of Goodness (KL)

• The Kullback-Leibler Divergence

– It is the expectation of the log-likelihood function.
– This is a directed measure – changing the order of 

arguments yields a different result.
– Related to coding and quantization

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image
Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY]. 



6.555/HST 582 Apr-07

John W. Fishe 5

April 07 HST 582       © John W. Fisher III, 2002-2006 29

Maximum Likelihood Density Estimation

• What do we do when we can’t maximize the probability 
(e.g. when our samples come from a continuous 
distribution)?

• The maximum likelihood method chooses the parameter 
setting which maximizes the likelihood function (or some 
monotonically related function).

( )

( )1

ˆ arg max ;

arg max , , ;

ML

N

p X

p x x
θ

θ

θ θ

θ

=

= …
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Maximum Likelihood Density Estimation

• If the samples are i.i.d. (independent and identically 
distributed) the likelihood function simplifies to

• So why is this a good idea?

( )

( )

( )( )

ˆ arg max ;

arg max log ;

arg max log ;

ML i
i

i
i

i
i

p x

p x

p x

θ

θ

θ

θ θ

θ

θ

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
=

∏

∏

∑

r III 1
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A Gaussian Example

Which density 
best explains 
the observed 
data?
Relate to K-L
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Maximum Likelihood Estimate of 
Gaussian Density Parameters

Example:
• X are samples of an M-dimensional 

Gaussian random variable
• The set θ contains the mean vector 

and covariance matrix which 
completely specify the Gaussian 
density.

• P is the number of independent
parameters which consists of M 
(for the mean vector) plus M (for 
the diagonal elements of the 
covariance matrix) plus (M2-M)/2 
(which is half of the off-diagonal 
elements – the other half are the 
same).

• The parameterized (model) density 
is then the Gaussian form with mean 
and covariance as parameters.
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2D Gaussian

•Gaussian Models
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Maximum Likelihood Density Estimation

• The score function is the derivative of the (log) 
likelihood function with respect to the parameters.

– This derivative or gradient yields a system of equations, 
the solution to which gives the ML estimate of the density 
parameters

– In the Gaussian case this results in a system of linear  
equations (woo hoo!).

– More complicated models result in a nonlinear system of 
equations.

( ) ( )( )log ;i
i

S X p xθ θ
θ
∂

=
∂ ∑

I
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Maximum Likelihood Estimate of 
Gaussian Density Parameters

Example:
• The ML estimates of θ for the Gaussian turn out to be the 

sample mean and sample covariance.

• This is an example of a “Parametric” density estimate. First 
we compute some functions of the data (e.g. sample mean and 
covariance) and then plug the functions into some known form 
(e.g. the Gaussian).

( )
( )

( ) ( )1
1
22

1 1ˆ ; exp
22

T
ML ML ML MLM

ML

p x x xθ μ μ
π

−⎛ ⎞= − − Σ −⎜ ⎟
⎝ ⎠Σ

( )( )

1

1

1

1

N

ML i
i

ML N
T

ML i ML i ML
i

x
N

x x
N

μ
θ

μ μ

=

=

⎧ ⎫
=⎪ ⎪⎪ ⎪= ⎨ ⎬

⎪ ⎪Σ = − −
⎪ ⎪⎩ ⎭

∑

∑
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Nonparametric Density Estimation

1. Normalized Histograms –> Convert to a PMF
2. Parzen Estimate
3. K-NN Estimate

• These methods are useful when the density exhibits 
more complex structure than a simple parameterized 
family.

• Convergence over a broader class of densities than 
any parametric density estimate (just more slowly).

• In contrast to Parametric estimates, nonparametric 
estimates are computed directly from our data 
samples.
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Nonparametric Density Estimation

• Two common types are Parzen Windows and K-Nearest 
Neighbors (kNN)

– consistency, bias, variance, convergence
– quality measures

• They both exploit the following idea:

, 0
( ) lim

xN V x

kp x
NV→∞ →

=
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Nonparametric Estimation

• Assume the model has arbitrary form
• Estimate the function directly from samples

– In some sense the model is parameterized directly from 
the samples
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, 0
( ) lim

xN V x

kp x
NV→∞ →

=

Nonparametric Density Estimation

• Generally, such estimates 
are “local” estimates.

– Consequently the estimate 
at point x1 is relatively 
unaffected by a “distant”
point x2

• Issues
– need more samples for 

estimation at some points
– uniform convergence rates 

are not always possible (i.e. 
the estimate is better in 
some regions of X than 
others).

April 07 HST 582       © John W. Fisher III, 2002-2006 40

Nonparametric Density Estimation

• Let’s estimate the density 
function in the following 
way:

– define a region L(x) about 
some point x.

– estimate the probability of 
samples appearing in that 
region as

– or

– if v is fixed then k is a 
random variable, if k is fixed 
that v is a random variable

Nxkvxp /)()(ˆ =

Nv
xkxp )()(ˆ =
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Use of Nonparametric Statistics

• The Parzen Density estimator

• Convolution of a kernel with the data
• Kernel encapsulates “local” and “distance”
• Note that the kernel function is not necessarily 

constant which is a slight deviation from the “counting”
argument on the previous slide.

∑
=

−=
N

i
h

xx
Nh N

i

N
kxp

1

1 )()(ˆ
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Parzen Density Estimate

x

p(x)

sher III
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Variance and Bias (Parzen)

∫=∞→ dxxkxpxpNhN
2)()()](ˆvar[lim

)(*)(

)()()}(ˆ{

xkxp

duuxkupxpE

=

−= ∫
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Consistency Conditions (Parzen)

• k(x) is a density

• k(x) is “local”.

( ) 1

( ) 0
lim ( ) 0x

k x dx

k x
xk x→±∞

=

>

=

∫

 III 22
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Consistency Conditions (Parzen)

• These conditions ensure that the Parzen estimate is 
asymptotically unbiased

where hN loosely indicates that h is a function of N

lim 0
lim

N N

N N

h
Nh

→∞

→∞

=
= ∞
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k Nearest Neighbors Density Estimate

• The Parzen density fixed the volume (via the kernel).
• The kNN estimate varies the the volume (via k).

• The volume, v(x), is set such that at any point x it 
encloses k sample points.

• The Parzen density integrates to unity, the kNN density 
estimate does not.

• Early convergence results for classification.

( )
( )
kp x

Nv x
=

sher III 23
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k Nearest Neighbors Classification

• One approach to 
classification might be to plug 
the density estimate directly 
into the Bayes’ decision rule.

• However, K-NN provides a 
method for estimating the 
class directly (without the 
intermediate density 
estimate)

K-NN Classification Procedure
1. Given a new sample xo

increase the volume v(xo) 
until it encloses k sample 
points.

2. The class then corresponds 
to the majority.
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