$\mbox{HST.582J} \ / \ 6.555\mbox{J} \ / \ 16.456\mbox{J}$ Biomedical Signal and Image Processing Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Harvard-MIT Division of Health Sciences and Technology HST.582J: Biomedical Signal and Image Processing, Spring 2007 Course Director: Dr. Julie Greenberg

Automated Decision Making Systems

Probability, Classification, Model Estimation

Information and Statistics

One the use of statistics:

"There are three kind of lies: lies, damned lies, and statistics"

- Benjamin Disraeli (popularized by Mark Twain)

On the value of information:

"And when we were finished renovating our house, we had only \$24.00 left in the bank only because the plumber didn't know about it."

- Mark Twain (from a speech paraphrasing one of his books)

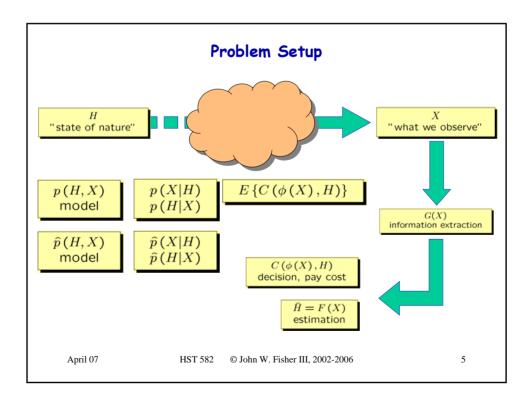
April 07

HST 582 © John W. Fisher III, 2002-2006

Elements of Decision Making Systems

- 1. Probability
 - · A quantitative way of modeling uncertainty.
- 2. Statistical Classification
 - · application of probability models to inference.
 - · incorporates a notion of optimality
- 3. Model Estimation
 - · we rarely (OK never) know the model beforehand.
 - · can we estimate the model from labeled observations.

April 07 HST 582 © John W. Fisher III, 2002-2006



Concepts

- In many experiments there is some element of randomness the we are unable to explain.
- Probability and statistics are mathematical tools for reasoning in the face of such uncertainty.
- · They allow us to answer questions quantitatively such as
 - Is the signal present or not?
 - · Binary : YES or NO
 - How certain am I?
 - · Continuous : Degree of confidence
- · We can design systems for which
 - Single use performance has an element of uncertainty
 - Average case performance is predictable

April 07

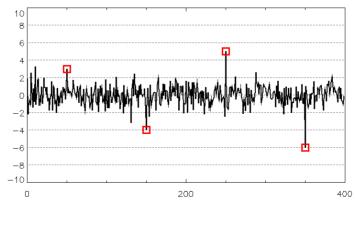
HST 582 ©

© John W. Fisher III, 2002-2006

7

Anomalous behavior (example)

- · How do quantify our belief that these are anomalies?
- · How might we detect them automatically?



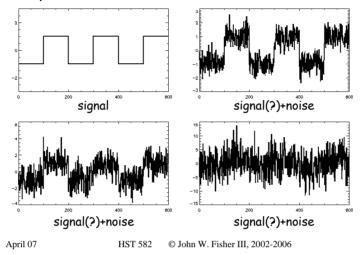
April 07

HST 582 © John W. Fisher III, 2002-2006

0

Detection of signals in noise

- In which of these plots is the signal present?
- · Why are we more certain in some cases than others?



Coin Flipping

- · Fairly simple probability modeling problem
 - Binary hypothesis testing
 - Many decision systems come down to making a decision on the basis of a biased coin flip (or N-sided die)

April 07 HST 582

10

© John W. Fisher III, 2002-2006

Bayes' Rule

• Bayes' rule plays an important role in classification, inference, and estimation.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$= \frac{P(B|A)P(B)}{P(B)}$$

$$= P(B|A)P(A)$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

$$= \frac{P(A|B)P(B)}{P(A)}$$

 A useful thing to remember is that conditional probability relationships can be derived from a Venn diagram. Bayes' rule then arises from straightforward algebraic manipulation.

April 07

HST 582

© John W. Fisher III, 2002-2006

11

Heads/Tails Conditioning Example

- If I flip two coins and tell you at least one of them is "heads" what is the probability that at least one of them is "tails"?
- The events of interest are the set of outcomes where at least one of the results is a head.
- The point of this example is two-fold
 - Keep track of your sample space and events of interest.
 - Bayes' rule tells how to incorporate information in order to adjust probability.

		2 nd flip	
		Н	Т
1st flip	Н	НН	нт
	Т	TH	TT

April 07

HST 582

© John W. Fisher III, 2002-2006

Heads/Tails Conditioning Example

- The probability that at least one of the results is heads is $\frac{3}{4}$ by simple counting.
- · The probability that both of the coins are heads is $\frac{1}{4}$

A	=	the "other" coin is heads
B	=	at least one of the coins is heads
AB	=	both of the coins are heads
P(A B)	=	$\frac{P(BA)}{P(B)}$

- The chance of winning is 1 in 3
- · Equivalently, the odds of winning are 1 to 2

		2 nd flip	
		H	Т
1st flip	Η	НН	НТ
	Т	TH	TT

		2 nd flip	
		Η	Т
1st flip	Η	НН	НТ
	Т	TH	TT

April 07

HST 582 © John W. Fisher III, 2002-2006

13

Defining Probability (Frequentist vs. Axiomatic)

The *probability* of an event is the number of times we expect a specific outcome relative to the number of times we conduct the experiment.

Define:

- ·N: the number of trials
- $\cdot N_A$, N_B : the number of times events **A** and **B** are observed.
- Events A and B are mutually exclusive (i.e. observing one precludes observing the other).

Empirical definition:

 Probability is defined as a limit over observations

$$P\{A\} = \lim_{N \to \infty} \left(\frac{N_A}{N}\right)$$

$$P\{B\} = \lim_{N \to \infty} \left(\frac{N_B}{N}\right)$$

$$P\{A + B\} = \lim_{N \to \infty} \left(\frac{N_A + N_B}{N}\right)$$

Axiomatic definition:

 Probability is derived from its properties

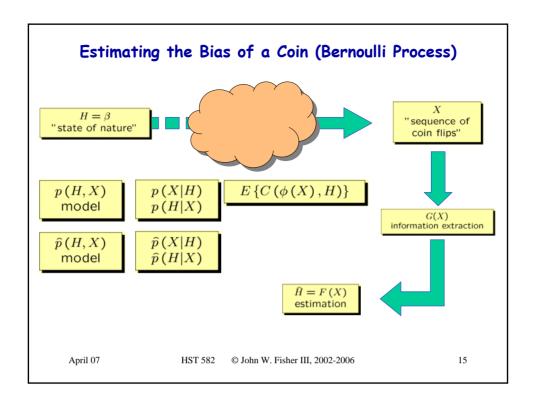
$$0 \le P\{A\}, P\{B\} \le 1$$

 $P\{\text{the certain event}\} = 1$
 $P\{A+B\} = P\{A\} + P\{B\}$

April 07

HST 582

© John W. Fisher III, 2002-2006



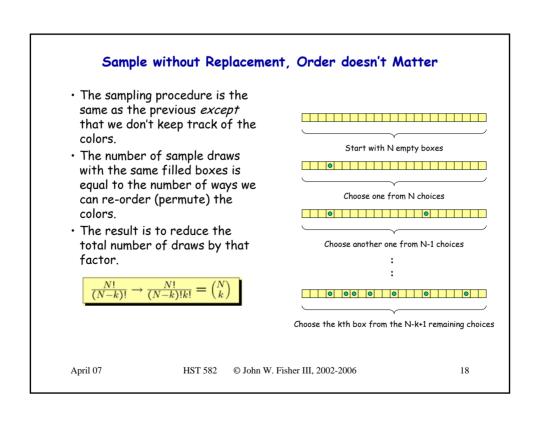
4 out of 5 Dentists...

- · What does this statement mean?
- · How can we attach meaning/significance to the claim?
- · An example of a frequentist vs. Bayesian viewpoint
 - The difference (in this case) lies in:
 - The assumption regarding how the data is generated
 - · The way in which we can express certainty about our answer
 - Asympotitically (as we get more observations) they both converge to the same answer (but at different rates).

April 07

HST 582 © John W. Fisher III, 2002-2006

Sample without Replacement, Order Matters Begin with N empty boxes each term represents the number of different choices we have at each stage $N \times (N-1) \times (N-2) \times \cdots \times (N-k+1)$ Start with N empty boxes · this can be re-written as $N \times (N-1) \times (N-2) \times \cdots \times 2 \times 1$ $(N-k) \times (N-k-1) \times (N-2) \times \cdots \times 2 \times 1$ Choose one from N choices · and then "simplified" to $\frac{N!}{(N-k)!}$ Choose another one from N-1 choices At left: color indicates the *order* in which we filled the boxes. Any sample which fills the same boxes, but has a different color in any box (there will be at least 2) is considered a different Choose the kth box from the N-k+1 remaining choices sample. April 07 HST 582 © John W. Fisher III, 2002-2006 17



Cumulative Distributions Functions (PDFs)

 cumulative distribution function (CDF) divides a continuous sample space into two events

$$P_X(x) = \Pr\left\{X \le x\right\} \quad 1 - P_X(x) = \Pr\left\{X > x\right\}$$

It has the following properties

$$P_X(-\infty) = 0$$

$$P_X(\infty) = 1$$

$$0 \le P_X(x) \le 1$$

$$P_X(x + \Delta) \ge P_X(x) ; \Delta \ge 0$$

April 07

HST 582 © John W. Fisher III, 2002-2006

19

Probability Density Functions (PDFs)

 probability density function (PDF) is defined in terms of the CDF

$$P_X(x) = \int_{-\infty}^x p_X(u) du$$
$$p_X(x) = \frac{\partial}{\partial x} P_X(x)$$

Some properties which follow are:

$$\int_{-\infty}^{\infty} p_x(u) du = 1$$

$$p_X(x) \ge 0$$

April 07

HST 582 © John W. Fisher III, 2002-2006

Expectation

 Given a function of a random variable (i.e. g(X)) we define it's expected value as:

$$E\{g(X)\} = \sum_{i=1}^{N} g(x_i) p_x(x_i)$$
$$= \int_{\Omega_X} g(u) p_x(u) du$$

 For the mean, variance, and entropy (continous examples):

g(X)	statistic
X	mean
$(X - E\{X\})^2$	variance
$-\log\left(p_x\left(X\right)\right)$	entropy

 Expectation is linear (see variance example once we've defined joint density function and statistical independence)

$$E\left\{\alpha f(x) + \beta g(x)\right\} = \alpha E\left\{f(x)\right\} + \beta E\left\{g(x)\right\}$$

- Expectation is with regard to ALL random variables within the arguments.
 - This is important for multidimensional and joint random variables.

April 07

HST 582

© John W. Fisher III, 2002-2006

21

Multiple Random Variables (Joint Densities)

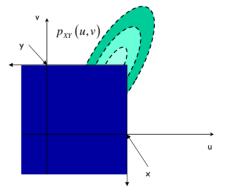
We can define a density over multiple random variables in a similar fashion as we did for a single random variable.

- 1. We define the probability of the event $\{X \le x \text{ AND } Y \le y\}$ as a function of x and y.
- The density is the function we integrate to compute the probability.

$$P_{XY}(x,y) = \Pr\{X \le x \text{ AND } Y \le y\}$$

$$= \int_{-\infty}^{x} \int_{-\infty}^{y} p_{xy}(u,v) dudv$$

$$p_{XY}(x,y) = \frac{\partial^{2}}{\partial x^{2}} P_{XY}(x,y)$$

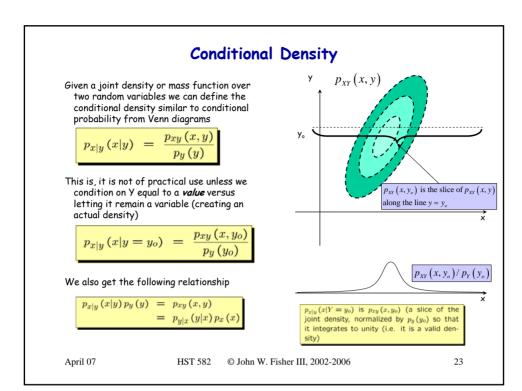


 $P_{XY}(x,y)$ is the area under the curve integrated over shaded region for a given $\{x,y\}$

April 07

HST 582

© John W. Fisher III, 2002-2006



Bayes' Rule

 For continuous random variables, Bayes' rule is essentially the same (again just an algebraic manipulation of the definition of a conditional density).

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{p_Y(y)}$$

• This relationship will be very useful when we start looking at classification and detection.

April 07 HST 582 © John W. Fisher III, 2002-2006

Binary Hypothesis Testing (Neyman-Pearson) (and a "simplification" of the notation)

 2-Class problems are equivalent to the binary hypothesis testing problem.

$$H_1$$
 : $x \sim p_{X|H_1}\left(x|H_1 \text{ is true}\right)$
 H_0 : $x \sim p_{X|H_0}\left(x|H_0 \text{ is true}\right)$

The goal is *estimate* which Hypothesis is true (i.e. from which class our sample came from).

 A minor change in notation will make the following discussion a little simpler.

```
p_1(x) = p_{X|H_1}(x|H_1 \text{ is true})

p_0(x) = p_{X|H_0}(x|H_0 \text{ is true})
```

Probability density models for the measurement x depending on which hypothesis is in effect.

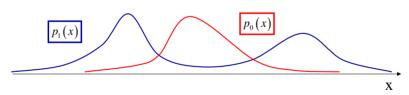
April 07

HST 582

© John W. Fisher III, 2002-2006

25

Decision Rules

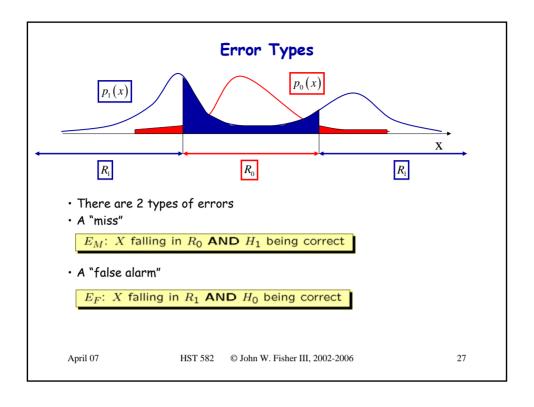


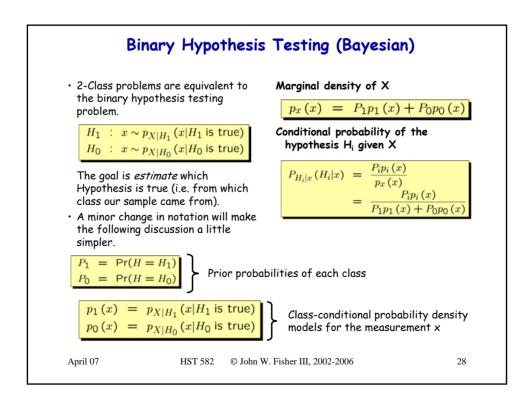
- Decision rules are functions which map measurements to choices.
- · In the binary case we can write it as

$$\phi(x) = \begin{cases} 1 & ; x \in R_1 \\ 0 & ; x \in R_0 \end{cases}$$

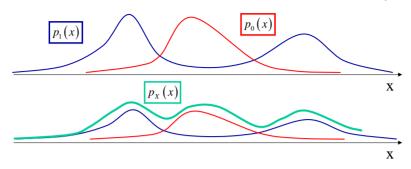
April 07

HST 582 © John W. Fisher III, 2002-2006





A Notional 1-Dimensional Classification Example



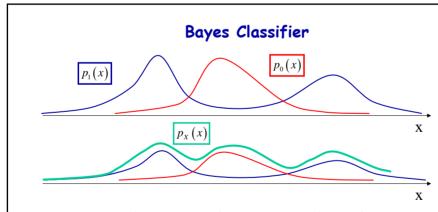
- So given observations of x, how should select our best guess of H_i ?
- Specifically, what is a good criterion for making that assignment?
- Which H_i should we select before we observe x.

April 07

HST 582

© John W. Fisher III, 2002-2006

29

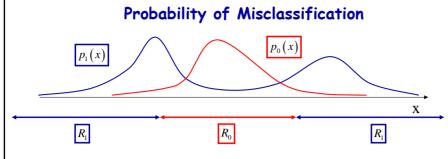


- A reasonable criterion for guessing values of H given observations of X is to minimize the probability of error.
- The classifier which achieves this minimization is the Bayes classifier.

April 07

HST 582

© John W. Fisher III, 2002-2006

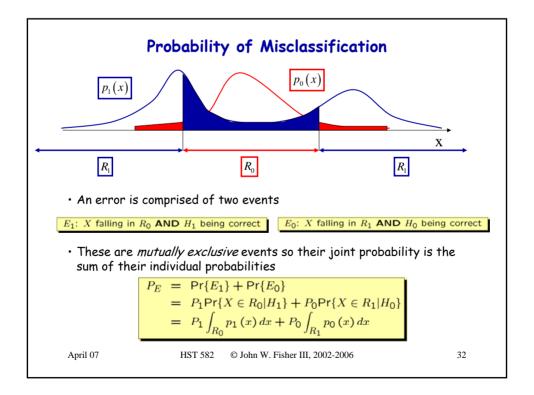


- Before we derive the Bayes' classifier, consider the probability of misclassification for an arbitrary classifier (i.e. decision rule).
 - The first step is to assign regions of X, to each class.
 - An error occurs if a sample of x falls in $\mbox{\bf R}_{i}$ and we assume hypothesis $\mbox{\bf H}_{i}.$

April 07

HST 582 © John W. Fisher III, 2002-2006

31



Minimum Probability of Misclassification

· So now let's choose regions to minimize the probability of error.

$$P_{E} = P_{1} \int_{R_{0}} p_{1}(x) dx + P_{0} \int_{R_{1}} p_{0}(x) dx$$

$$= P_{1} \left(1 - \int_{R_{1}} p_{1}(x) dx \right) + P_{0} \int_{R_{1}} p_{0}(x) dx$$

$$= P_{1} + \int_{R_{1}} \left(\underbrace{P_{0}p_{0}(x)}_{\geq 0} - \underbrace{P_{1}p_{1}(x)}_{\geq 0} \right) dx$$

- In the second step we just change the region over which integrate for one of the terms (these are complementary events).
- In the third step we collect terms and note that all underbraced terms in the integrand are non-negative.
- If we want to choose regions (remember choosing region 1 effectively chooses region 2) to minimize $P_{\rm E}$ then we should set region 1 to be such that the integrand is negative.

April 07

HST 582 © John W. Fisher III, 2002-2006

33

Minimum Probability of Misclassification

• Consequently, for minimum probability of misclassification (which is the Bayes error), R_1 is defined as

$$R_1 = \{x : P_1p_1(x) > P_2p_2(x)\}$$

- \cdot R_2 is the complement. The boundary is where we have equality.
- Equivalently we can write the condition as when the likelihood ratio for H_1 vs H_0 exceeds the PRIOR odds of H_0 vs H_1

$$R_1 = \left\{ x : \frac{p_1(x)}{p_0(x)} > \frac{P_0}{P_1} \right\}$$

April 07

HST 582 © John W. Fisher III, 2002-2006

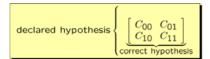
Risk Adjusted Classifiers

Suppose that making one type of error is more of a concern than making another. For example, it is worse to declare H₁ when H₂ is true then vice versa.

 This is captured by the notion of "cost".

 C_{ij} = cost of declaring H_i when H_j is correct

 In the binary case this leads to a cost matrix.



 The Risk Adjusted Classifier tries to minimize the expected "cost"

Derivation

- We'll simplify by assuming that C₁₁=C₂₂=0 (there is zero cost to being correct) and that all other costs are positive.
- Think of cost as a piecewise constant function of X.
- If we divide X into decision regions we can compute the expected cost as the cost of being wrong times the probability of a sample falling into that region.

$$\begin{split} E\left\{C\left(x,H\right)\right\} &= \int_{R_0} C_{01} P_1 p_1\left(x\right) dx + \int_{R_1} C_{10} P_0 p_0\left(x\right) dx \\ &= C_{01} P_1\left(1 - \int_{R_1} p_1\left(x\right) dx\right) + C_{10} P_0 \int_{R_1} p_0\left(x\right) dx \\ &= C_{01} P_1 + \int_{R_1} \left(\underbrace{C_{10} P_0 p_0\left(x\right)}_{\geq 0} - \underbrace{C_{01} P_1 p_1\left(x\right)}_{\geq 0}\right) dx \end{split}$$

April 07

HST 582 © John W. Fisher III, 2002-2006

35

Risk Adjusted Classifiers

Expected Cost is then

$$E\left\{ C\left(x,H\right) \right\} \ = \ C_{01}P_{1} + \int_{R_{1}} \left(\underbrace{C_{10}P_{0}p_{0}\left(x\right)}_{\geq 0} - \underbrace{C_{01}P_{1}p_{1}\left(x\right)}_{\geq 0} \right) dx$$

 As in the minimum probability of error classifier, we note that all terms are positive in the integral, so to minimize expected "cost" choose R₁ to be:

$$R_1 = \{x : C_{01}P_1p_1(x) > C_{10}P_0p_0(x)\}$$

Alternatively

$$R_1 = \left\{ x : \frac{p_1(x)}{p_0(x)} > \frac{C_{10}P_0}{C_{01}P_1} \right\}$$

- If C_{10} = C_{01} then the risk adjusted classifier is equivalent to the minimum probability of error classifier.
- Another interpretation of "costs" is an adjustment to the prior probabilities.

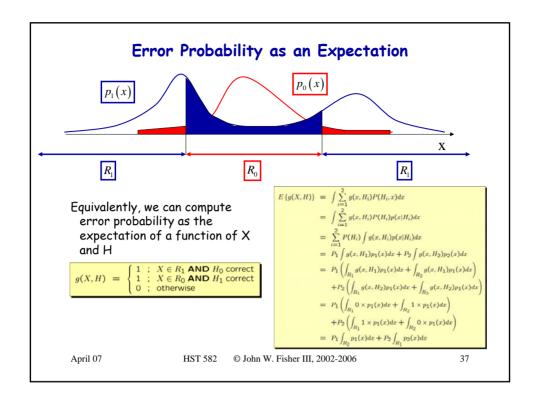
$$\frac{P_0^{\text{adj}}}{P_1^{\text{adj}}} = \frac{C_{10}P_0}{C_{01}P_1}$$

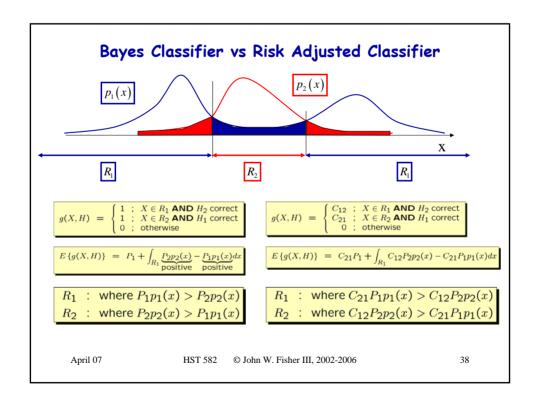
 Then the risk adjusted classifier is equivalent to the minimum probability of error classifier with prior probabilities equal to P₁^{adj} and P₀^{adj}, respectively.

April 07

HST 582

© John W. Fisher III, 2002-2006





Okay, so what.

All of this is great. We now know what to do in a few classic cases if some nice person hands us all of the probability models.

- In general we aren't given the models What do we do? Density estimation to the rescue.
- While we may not have the models, often we do have a collection of labeled measurements, that is a set of $\{x,H_i\}$.
- From these we can estimate the class-conditional densities.
 Important issues will be:
 - How "close" will the estimate be to the true model.
 - How does "closeness" impact on classification performance?
 - What types of estimators are appropriate (parametric vs. nonparametric).
 - Can we avoid density estimation and go straight to estimating the decision rule directly? (generative approaches versus discriminative approaches)

April 07

HST 582 © John W. Fisher III, 2002-2006