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Automated Decision Making Systems

Probability, Classification, Model Estimation
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Information and Statistics

One the use of statistics:

“There are three kind of lies: lies, damned lies, and statistics”
- Benjamin Disraeli (popularized by Mark Twain)

On the value of information:

“And when we were finished renovating our house, we had only $24.00 
left in the bank only because the plumber didn’t know about it.“

- Mark Twain (from a speech paraphrasing one of his books)

Harvard-MIT Division of Health Sciences and Technology
HST.582J: Biomedical Signal and Image Processing, Spring 2007
Course Director: Dr. Julie Greenberg
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Elements of Decision Making Systems

1. Probability 
• A quantitative way of modeling uncertainty.

2. Statistical Classification
• application of probability models to inference.
• incorporates a notion of optimality

3. Model Estimation
• we rarely (OK never) know the model beforehand.
• can we estimate the model from labeled observations.
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Problem Setup
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Concepts

• In many experiments there is some element of 
randomness the we are unable to explain.

• Probability and statistics are mathematical tools for 
reasoning in the face of such uncertainty.

• They allow us to answer questions quantitatively such as
– Is the signal present or not? 

• Binary : YES or NO
– How certain am I? 

• Continuous : Degree of confidence

• We can design systems for which
– Single use performance has an element of uncertainty
– Average case performance is predictable
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Anomalous behavior (example)

• How do quantify our belief that these are anomalies?
• How might we detect them automatically?

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing,
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on [DD Month YYYY]. 



6.555/HST 582 Apr-07

John W. Fisher III 5

April 07 HST 582       © John W. Fisher III, 2002-2006 9

Detection of signals in noise

• In which of these plots is the signal present?
• Why are we more certain in some cases than others?

signal signal(?)+noise

signal(?)+noise signal(?)+noise
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Coin Flipping

• Fairly simple probability modeling problem
– Binary hypothesis testing
– Many decision systems come down to making a decision on 

the basis of a biased coin flip (or N-sided die)
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Bayes’ Rule

• Bayes’ rule plays an important role in classification, 
inference, and estimation.

• A useful thing to remember is that conditional
probability relationships can be derived from a Venn 
diagram. Bayes’ rule then arises from straightforward 
algebraic manipulation.
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Heads/Tails Conditioning Example

2nd flip

H T

H HH HT

T TH TT

1 stflip

• If I flip two coins and tell you 
at least one of them is “heads”
what is the probability that at 
least one of them is “tails”?

• The events of interest are the 
set of outcomes where at least
one of the results is a head.

• The point of this example is 
two-fold

– Keep track of your sample space 
and events of interest.

– Bayes’ rule tells how to 
incorporate information in order 
to adjust probability.

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing,
Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded
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Heads/Tails Conditioning Example

• The probability that at least
one of the results is heads is ¾
by simple counting.

• The probability that both of 
the coins are heads is ¼

• The chance of winning is 1 in 3
• Equivalently, the odds of 

winning are 1 to 2

2nd flip

H T

H HH HT

T TH TT

1 stflip

2nd flip

H T

H HH HT

T TH TT

1 stflip
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Defining Probability (Frequentist vs. Axiomatic)

Empirical definition: Axiomatic definition:
• Probability is defined as a 

limit over observations

The probability of an event is the number of times we expect a specific 
outcome relative to the number of times we conduct the experiment.

Define:
•N : the number of trials

•NA, NB : the number of times events A and B are observed. 

•Events A and B are mutually exclusive (i.e. observing one precludes observing 
the other).

• Probability is derived from 
its properties

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing,
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Estimating the Bias of a Coin (Bernoulli Process)
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4 out of 5 Dentists…

• What does this statement mean?
• How can we attach meaning/significance to the claim?

• An example of a frequentist vs. Bayesian viewpoint
– The difference (in this case) lies in:

• The assumption regarding how the data is generated
• The way in which we can express certainty about our answer

– Asympotitically (as we get more observations) they both 
converge to the same answer (but at different rates).
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Sample without Replacement, Order Matters

Begin with N empty boxes
• each term represents the number 

of different choices we have at 
each stage

• this can be re-written as

• and then “simplified” to

At left: color indicates the order
in which we filled the boxes. 
Any sample which fills the same 
boxes, but has a different color 
in any box (there will be at least 
2) is considered a different
sample.

Start with N empty boxes

Choose one from N choices

Choose another one from N-1 choices

Choose the kth box from the N-k+1 remaining choices

:
:
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Sample without Replacement, Order doesn’t Matter

• The sampling procedure is the 
same as the previous except
that we don’t keep track of the 
colors.

• The number of sample draws 
with the same filled boxes is 
equal to the number of ways we 
can re-order (permute) the 
colors.

• The result is to reduce the 
total number of draws by that 
factor.

Start with N empty boxes

Choose one from N choices

Choose another one from N-1 choices

Choose the kth box from the N-k+1 remaining choices

:
:
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Cumulative Distributions Functions (PDFs)

• cumulative distribution function (CDF) divides a 
continuous sample space into two events

• It has the following properties
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Probability Density Functions (PDFs)

• probability density function (PDF) is defined in terms 
of the  CDF

• Some properties which follow are:
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Expectation

• Given a function of a random • Expectation is linear (see 
variable (i.e. g(X)) we define it’s variance example once we’ve 
expected value as: defined joint density function

and statistical independence)

• Expectation is with regard to 
ALL random variables within the • For the mean, variance, and 
arguments. entropy (continous examples):

– This is important for multi-
dimensional and joint random 
variables.
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Multiple Random Variables (Joint Densities)

We can define a density over v
multiple random variables in a 
similar fashion as we did for a 
single random variable.
1. We define the probability of the 

event                              as a
function of x and y.

2. The density is the function we 
integrate to compute the 
probability. 

u

p uXY ( ,v)
y

x

{X ≤ ≤x Y AND y}

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing,
Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded
on [DD Month YYYY]. 



6.555/HST 582 Apr-07

John W. Fisher III 12

April 07 HST 582       © John W. Fisher III, 2002-2006 23

Conditional Density

Given a joint density or mass function over 
two random variables we can define the 
conditional density similar to conditional 
probability from Venn diagrams

This is, it is not of practical use unless we 
condition on Y equal to a value versus 
letting it remain a variable (creating an 
actual density)

We also get the following relationship

y

x

p xXY ( , y)

yo

pXY (x y, o ) ( is the slice of pXY x, y)
along the line y y= o

x

p xXY ( ), /yo pY ( yo )
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Bayes’ Rule

• For continuous random variables, Bayes’ rule is 
essentially the same (again just an algebraic 
manipulation of the definition of a conditional density).

• This relationship will be very useful when we start 
looking at classification and detection.

( ) ( )( ) ( )
p

X Y | Y X| y x| pX x
p x| y =

p yY
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Binary Hypothesis Testing (Neyman-Pearson) 
(and a “simplification” of the notation)

• 2-Class problems are equivalent to the binary hypothesis 
testing problem.

The goal is estimate which Hypothesis is true (i.e. from 
which class our sample came from).

• A minor change in notation will make the following 
discussion a little simpler.

Probability density models for the 
measurement x depending on which 
hypothesis is in effect.
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Decision Rules

• Decision rules are functions which map measurements to 
choices.

• In the binary case we can write it as

p0 (x)

x

p1 (x)
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Error Types

• There are 2 types of errors
• A “miss”

• A “false alarm”

x
R1 R1R0

p0 (x)p1 (x)
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Binary Hypothesis Testing (Bayesian) 

• 2-Class problems are equivalent to Marginal density of X
the binary hypothesis testing 
problem.

Conditional probability of the 
hypothesis Hi given X

The goal is estimate which 
Hypothesis is true (i.e. from which 
class our sample came from).

• A minor change in notation will make 
the following discussion a little 
simpler.

Prior probabilities of each class

Class-conditional probability density 
models for the measurement x

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing,
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A Notional 1-Dimensional Classification Example

• So given observations of x, how should select our best 
guess of Hi?

• Specifically, what is a good criterion for making that 
assignment?

• Which Hi should we select before we observe x.

p0 (x)

x

p1 (x)

pX (x)

x
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Bayes Classifier

• A reasonable criterion for guessing values of H given 
observations of X is to minimize the probability of 
error.

• The classifier which achieves this minimization is the 
Bayes classifier.

xpX (x)

x

p0 (x)p1 (x)
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Probability of Misclassification

• Before we derive the Bayes’ classifier, consider the 
probability of misclassification for an arbitrary
classifier (i.e. decision rule).

– The first step is to assign regions of X, to each class.
– An error occurs if a sample of x falls in Ri and we assume 

hypothesis Hj.

x
R1 R1R0

p0 (x)p1 (x)
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Probability of Misclassification

• An error is comprised of two events

• These are mutually exclusive events so their joint probability is the 
sum of their individual probabilities

x
R1 R1R0

p0 (x)p1 (x)

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing,
Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded
on [DD Month YYYY]. 



6.555/HST 582 Apr-07

John W. Fisher III 17

April 07 HST 582       © John W. Fisher III, 2002-2006 33

Minimum Probability of Misclassification

• So now let’s choose regions to minimize the probability of error.

• In the second step we just change the region over which integrate 
for one of the terms (these are complementary events).

• In the third step we collect terms and note that all underbraced
terms in the integrand are non-negative.

• If we want to choose regions (remember choosing region 1 
effectively chooses region 2) to minimize PE then we should set 
region 1 to be such that the integrand is negative.
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Minimum Probability of Misclassification

• Consequently, for minimum probability of 
misclassification (which is the Bayes error), R1 is 
defined as

• R2 is the complement. The boundary is where we have 
equality.

• Equivalently we can write the condition as when the 
likelihood ratio for H1 vs H0 exceeds the PRIOR odds of 
H0 vs H1
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Risk Adjusted Classifiers

Suppose that making one type of Derivation
error is more of a concern than 
making another. For example, it is 
worse to declare H1 when H2 is true 
then vice versa.

• This is captured by the notion of 
“cost”.

• In the binary case this leads to a 
cost matrix.

• The Risk Adjusted Classifier tries 
to minimize the expected “cost”

• We’ll simplify by assuming that 
C11=C22=0 (there is zero cost to 
being correct) and that all other 
costs are positive.

• Think of cost as a piecewise 
constant function of X.

• If we divide X into decision regions 
we can compute the expected cost 
as the cost of being wrong times 
the probability of a sample falling 
into that region.
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Risk Adjusted Classifiers

Expected Cost is then • If C10=C01 then the risk 
adjusted classifier is equivalent 
to the minimum probability of 
error classifier.

• Another interpretation of • As in the minimum probability of “costs” is an adjustment to the error classifier, we note that all prior probabilities.terms are positive in the integral, so 
to minimize expected “cost” choose 
R1 to be:

• Alternatively
• Then the risk adjusted 

classifier is equivalent to the 
minimum probability of error 
classifier with prior 
probabilities equal to P adj 

1 and 
P adj

0 , respectively.
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Error Probability as an Expectation

Equivalently, we can compute 
error probability as the 
expectation of a function of X 
and H

x
R1 R1R0

p0 (x)p1 (x)
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Bayes Classifier vs Risk Adjusted Classifier

x
R1 R1R2

p2 (x)p1 (x)
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Okay, so what.

All of this is great. We now know what to do in a few classic cases if 
some nice person hands us all of the probability models.

• In general we aren’t given the models – What do we do?
Density estimation to the rescue.
• While we may not have the models, often we do have a collection of 

labeled measurements, that is a set of {x,Hj}.
• From these we can estimate the class-conditional densities. 

Important issues will be:
– How “close” will the estimate be to the true model.
– How does “closeness” impact on classification performance?
– What types of estimators are appropriate (parametric vs. nonparametric).
– Can we avoid density estimation and go straight to estimating the decision 

rule directly? (generative approaches versus discriminative approaches)
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