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Chapter 9 - IMAGE PROCESSING 

c©Paul Albrecht, Bertrand Delgutte, and Julie Greenberg, 2001 

Introduction 

Image processing represents an application of the more general field of two-dimensional (2-D) 
signal processing. In the same way that a one-dimensional (1-D) signal x(t) can  be  sampled  to  
form a discrete-time signal x[n], an image can be digitized to form a 2-D discrete-space signal 
x[n1, n2]. The digitized samples of an image are referred to as pixels. Figure 1 (parts a-c) shows 
a sampled image with three different spatial resolutions. 

Most commonly, the value of the pixel x[n1, n2] is interpreted as the light intensity of the image 
at the point (n1, n2). This approach works very well for gray-scale images, and can easily be 
extended for color. Since any color image can be separated into combination of three mono-color 
images (usually red, green, and blue), a color image can be represented by three separate mono-
color x[n1, n2] images. While color images can convey more information to a human observer, 
they can greatly increase the complexity of the image processing task. In this chapter we will 
only consider gray-scale images. 

Digital images are not only discrete-space, they are also quantized in the sense that each pixel 
can only take a finite number of values. Figure 1 (parts a,d,e) shows three versions of an image 
quantized to 256, 16, and 2 gray levels, respectively. While the 256-level (8-bit) image is of 
good quality, quantization is noticeable for 16 gray levels (4 bits). On the other hand, the 
image remains recognizable with as few as 2 gray levels (1 bit). In these notes, we will ignore 
quantization, assuming that the number of gray levels is large enough that these effects can be 
neglected. 

Some image processing methods are simple extensions of their 1-D counterparts. For example, 
Fourier transforms and convolution/filtering have a natural extension from the 1-D to the 2­
D case. However, some methods, such as histogram modification are specific to images, and 
arise because the results of image processing are viewed, not as graphs, but as as gray-scale 
images. The visual impact of x[n1, n2] is usually very different when it is displayed as an image 
rather than a surface contour (see Figure 2). Other differences between 1-D and 2-D signal 
processing arise because certain mathematical properties of 1-D signals do not hold for 2-D 
signals. For example, as seen in Chapter 6, 1-D filters can be characterized by their poles and 
zeros. However, it is not in general possible to characterize 2-D filters by their poles and zeroes 
because 2-D polynomials do not always have roots. 
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9.1 The 2-D Continuous Space Fourier Transform 

Although processing by digital computers requires discrete images, many basic concepts of image 
processing are most clearly introduced using continuous images because of the greater symmetry 
between spatial coordinates, and between the space and frequency domains. 

The Fourier transform pair for a two dimensional signal x(t1, t2) is  given  by  1 

∫ ∞ ∫ ∞ 
X(F1, F2) =  x(t1, t2) e −j2π t1F1 e −j2π t2F2 dt1dt2 (9.1a) 

−∞ −∞ 

and ∫ ∞ ∫ ∞ 
x(t1, t2) =  X(F1, F2) ej2π t1F1 ej2π t2F2 dF1dF2 (9.1b) 

−∞ −∞ 

As an example of a 2-D transform, consider the simple rectangular function x(t1, t2) which has 
unit amplitude for | t1| < T1 and | t2| < T2 and is 0 otherwise. The Fourier transform of x(t1, t2) 
is given by ∫ T1 

∫ T2 

X(F1, F2) =  e −j2π t1 F1 e −j2π t2F2 dt1dt2 (9.2a) 
−T 1 −T 2 

sin(2πF1T1) sin(2πF2T2)
X(F1, F2) = 4T1T2 (9.2b)

2πF1T1 2πF2T2 

Thus, the Fourier transform of a 2-D rectangle is a 2-D sinc function. Figure 2 shows the 
graph of | X(F1, F2)| for a rectangle with T1 = T2. The magnitude | X(F1, F2)| is shown both 
in conventional 3-D perspective and as a gray-scale image. Figure 3 shows examples of other 
signals x(t1, t2) which have unit amplitude in a part of the t1, t2 space; also shown are their 
Fourier transform magnitudes | X(F1, F2)| . 

In displaying | X(F1, F2)| as an image, it is common to transform the magnitude to image 
intensity using the function 

I(F1, F2) =  log(1  +  | X(F1, F2)| )  (9.3) 

The use of Equation (9.3) helps compensate for the fact that the eye has a logarithmic response 
to intensity. If the intensity were left proportional to | X(F1, F2)| , most of the smaller features 
of | X(F1, F2)| would not be visible. The Fourier transform images shown in Figure 2 and 9.3 
have been adjusted using Equation (9.3). 

9.1.1 Separability of the Fourier integral 

The Fourier transform X(F1, F2) in Equation (9.2b) can be written as the product of two separate 
sinc functions X1(F1) and  X2(F2). Examining Equations (9.1a,b), we can see that this is to be 
expected. In general, if x(t1, t2) is the product of a function of t1 and a function of t2, then  
X(F1, F2) is the product of the 1-D transforms: 

x(t1, t2) =  x1(t1) x2(t2) ←→ X(F1, F2) =  X1(F1) X2(F2) 
1We use the notation t1 and t2 to represent the two dimensions of the signal. These variables should not be 

confused with time. In the case of images, t1 and t2 represent spatial coordinates. 
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Even when x(t1, t2) is not the product of a function of t1 and a function of t2, the evaluation of 
the Fourier transform can still be grouped as ∫ ∞ ∫ ∞ 

X(F1, F2) =  (  x(t1, t2) e −j2π t1F1 dt1) e −j2π t2F2 dt2 (9.4) 
−∞ −∞ 

Equation (9.4) is important because it demonstrates that a 2-D Fourier transform can be eval­
uated as separate 1-D Fourier transforms. 

9.1.2 Rotation theorem 

If the signal x(t1, t2) is rotated by and angle Δθ in the (t1, t2) space, how does this change 
X(F1, F2)? In the simple case of a 90 degree rotation, the two indices are exchanged in both 
x(t1, t2) and  X(F1, F2). Hence X(F1, F2) is rotated by the same amount in the (F1, F2) space  
as x(t1, t2) in the  (t1, t2) space. The same is easily seen to be true for 180 and 270 degree 
rotations. In order to see what happens for an arbitrary rotation Δθ, let us transform x(t1, t2) 
and X(F1, F2) into polar coordinates, and define 

t1 = r cos θ, t2 = r sin θ (9.5) 

F1 = R cos φ, F2 = R sin φ 

Rewriting Equation (9.1a) in polar coordinates, we have 

∫ ∞ ∫ 2π 
X(R,φ) =  x(r, θ) e −j2π rR  sin θ sin φ e −j2π rR  cos θ cos φ r dr  dθ  (9.6a) 

0 0 

Combining the trigonometric terms in the exponential, this expression simplifies to 

∫ ∞ ∫ 2π 
X(R,φ) =  x(r, θ) e −j2π rRcos(θ−φ) r dr  dθ  (9.6b) 

0 0 

If instead of taking the transform of x(r, θ), we took the transform of x(r, θ +Δθ), we could still 
keep the right hand side of Equation (9.6b) unchanged as a function of R and φ if we substituted 
φ + Δθ for φ. This means that the Fourier transforms x(r, θ) and  X(R,φ) follow the rule 

x(r, θ + Δθ) ←→ X(R,φ +Δθ). (9.7) 

Regardless of the size of Δθ, rotating x(t1, t2) rotates X(F1, F2) by the same amount. An 
example of a rotation is shown in Figure 4. 

9.1.3 Radially symmetric signals 

A 2-D signal x(r, θ) is said to  be  radially symmetric if it depends only on r, i.e. x(r, θ) =  xr(r), 
where xr(r) is a 1-D signal. The rotation theorem implies that x(r, θ) is radially symmetric if 
and only if its Fourier transform X(R,φ) is also radially symmetric: 

x(r, θ) =  xr(r) ←→ X(R,φ) =  XR(R)  (9.8a) 
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{ 

Note however, that the 1-D signals xr(R) and  XR(R) do NOT form a Fourier transform pair. 
In fact, one has: ∫ ∞ 

XR(R) =  xr(r) J0(2πrR) dr (9.8b) 
0 

where J0(.) is the zeroth-order Bessel function of the first kind. 

An important example of a radially symmetric signal is the ideal lowpass filter defined in the 
frequency domain by 

� 1  if  R < W  
H(R,φ) =  (9.9a)

0  otherwise  

The corresponding impulse response can be shown to be 

W 
h(r, θ) =  J1(2πrW )  (9.9b) 

r 

where J1(.) is the first-order Bessel function of the first kind. The function J1(r)/r resembles 
a sinc function, with the important difference that its zeroes do not occur at exactly regular 
intervals. Figure 5 shows a sketch of the function J1(r)/r and a perspective display of the 
impulse response of the ideal lowpass filter. 

9.1.4 Projection-slice theorem 

Consider what happens if we integrate x(t1, t2) over  t2 to generate the 1-D projection 
∫ ∞ 

xp(t1) =  x(t1, t2) dt2 (9.10a) 
−∞ 

and we then compute Xp(F1) as the 1-D Fourier transform of xp(t1): ∫ ∞ ∫ ∞ ∫ ∞ 
Xp(F1) =  xp(t1) e −j2π t1F1 dt1 = x(t1, t2) e −j2π t1F1 dt1dt2 (9.10b) 

−∞ −∞ −∞ 

Comparing (9.10b) with (9.1a), we see that Xp(F1) is  equal  to  X(F1,0). Hence xp(t1) and  
X(F1, 0) are Fourier transforms of each other. 

The relationship between a projection and its Fourier transform can be easily generalized by 
application of the rotation theorem given by Equation (9.7). Since the Fourier transform of a 
rotated x(t1, t2) is  X(F1, F2) rotated by the same amount, we can make a more general statement 
known as the projection-slice theorem: 

The Fourier transform of x(t1, t2) projected onto a line that forms an angle θ0 

with respect to the horizontal axis t1 = 0 is  X(R, θ0). 

In the case of Equations (9.10a,b), the value of θ0 is 0. The projection slice theorem is the basis 
for computerized tomography. 
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∑ ∑ 

∫ ∫ 

9.1.5 Magnitude and phase of images 

It is common in 1-D signal processing to examine the magnitude and pay only passing attention 
to the phase of the Fourier transform. For typical 1-D signals, the structure of the phase is 
seldom as simple as that of the magnitude, so it cannot be characterized in some simple way. 
Yet the phase is critical for preserving the transitions in the level of the signal. For images, 
these transitions correspond to the boundaries between different elements in the image. 

The information content of an image usually depends more critically on the preservation of edges 
and boundaries than on the absolute intensity level of a given region. For this reason, the phase 
information becomes all the more important. Figure 6 gives an example of two images which 
can be separated into magnitude and phase. Two new images were constructed by pairing the 
phase of the first image with the magnitude of the second, and the phase of the second with the 
magnitude of the first. In both of the composite images the phase dominates the information 
conveyed by the image. 

9.2 The 2-D Discrete Space Fourier Transform 

The Fourier transform pair for a 2-D discrete-space, stable signal x[n1, n2] is  given  by  

∞ ∞ 

X(f1, f2) =  
∑ ∑ 

x[n1, n2] e −j2π n1f1 e −j2π n2f2 (9.11a) 
n1=−∞ n2=−∞ 

and 

x[n1, n2] =  
∫ 1/2 ∫ 1/2 

X(f1, f2) ej2π n1f1 ej2π n2f2 df1df2 (9.11b) 
−1/2 −1/2 

X(f1, f2) is  periodic  in both  f1 and f2, with period 1 for both variables. 

The 2-D transform pair satisfies relationships similar to its 1-D counterpart. If we define 2-D 
convolution as 

∞ ∞ 

x[n1, n2] ∗ ∗ y[n1, n2] =  x[k1, k2] y[n1 − k1, n2 − k2]  (9.12a) 
k1=−∞ k2=−∞ 

then the discrete space Fourier transform (DSFT) pair satisfies the convolution theorem 

x[n1, n2] ∗ ∗  y[n1, n2] ←→ X(f1, f2) Y (f1, f2)  (9.12b) 

Similarly, if the 2-D cyclic convolution is defined by 

1/2 1/2 
X(f1, f2) ∗©Y (f1, f2) 

� 
X(φ1, φ2)Y (f1 − φ1, f2 − φ2)dφ1dφ2 (9.13a)© ∗ = 

−1/2 −1/2 

the DSFT satisfies the product theorem 

x[n1, n2]y[n1, n2] ←→ X(f1, f2) ∗©Y (f1, f2) 13b)© ∗ (9.
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∫ ∫ 

∑ ∑ 

The transform pair also satisfies the initial value and DC value theorems 

1/2 1/2 
x[0, 0] = X(f1, f2) df1df2 (9.14a) 

−1/2 −1/2 

∞ ∞ 

X(0, 0) = x[n1, n2]  (9.14b) 
n1=−∞ n2=−∞ 

and Parseval’s theorem 

∞ ∞ ∫ ∫ ∑ ∑ 1/2 1/2 
|x[n1, n2]|2 = |X(f1, f2)|2 df1df2 (9.15) 

n1=−∞ n2=−∞ −1/2 −1/2 

9.2.1 Sampling an image 

Most 2-D discrete-space signals are obtained by sampling a continuous-space image. As in the 
1-D case, the bandwidth has to be limited in order to avoid aliasing and subsequent loss of 
information. Specifically, assume that a continuous-space signal x(t1, t2) is sampled at intervals 
of T1 and T2 in the horizontal and vertical dimensions respectively to form the discrete-space 
signal x[n1, n2]: 

x[n1, n2] =  x(n1T1, n2T2)  (9.16a) 

The relationship between X(f1, f2), the DSFT of x[n1, n2], and X(F1, F2), the CSFT of x(t1, t2) 
is given by: 

∞ ∞ ( )
1 ∑ ∑ f1 − k1 f2 − k2

X(f1, f2) =  X , (9.16b)
T1T2 k1=−∞ k2=−∞ 

T1 T2 

Thus, X(f1, f2) is formed by repeating X(F1, F2) indefinitely at intervals of T 
1 
1 
and T 

1 
2 
along the 

horizontal and vertical coordinates, respectively. In order to recover X(F1, F2) from  X(f1, f2) 
(and therefore x(t1, t2) from  x[n1, n2]), the Nyquist condition must be satisfied for both coordi­
nates: W1 < 1/2T1 and W2 < 1/2T2, where  W1 and W2 are the bandwidths of x(t1, t2) along  the  
t1 and t2 dimensions respectively. If the Nyquist condition is verified, x(t1, t2) can  be  derived  
from x[n1, n2] by means of the 2-D interpolation formula: 

∞ ∞ ∑ ∑ sin T
π 
1 
(t1 − n1T1) sin T

π 
2 
(t2 − n2T2) 

x(t1, t2) =  x[n1, n2] π π (9.17)
(t1 − n1T1) (t2 − n2T2)n1=−∞ n2=−∞ T1 T2 

This formula is a straightforward extension of the 1-D case. Figure 7a shows an image that was 
digitized with an antialiasing lowpass filter. Figure 7b shows the noticeable aliasing which occurs 
when the antialiasing filter is omitted. In practice, many images have most of their energy at 
low frequencies, so that antialiasing filters are often unnecessary. 

Even though it is, in principle, possible to recover a bandlimited 2-D continuous-space signal 
from its samples, certain properties of continuous-space signals do not hold for discrete-space 
signals. For example, we have seen that a continuous-space signal is radially symmetric if and 
only if its Fourier transform is radially symmetric. This is not true for discrete-space signals: A 
radially symmetric transform X(f1, f2) implies that x[n1, n2] is also radially symmetric, but the 
converse is not true, as shown by the simple counter examples of Equations (9.21) and (9.22). 
This result is significant because it is often desirable to design filters with radially symmetric 
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{ 

∑ ∑ 

frequency responses. Choosing a discrete-space filter with a radially-symmetric impulse response 
(although necessary) will not suffice to ensure that the frequency response is radially symmetric. 
Another example of a property that holds for continuous, but not discrete images is the projection 
slice theorem. In this case, the difficulty is that the projection of a discrete image is not 
mathematically defined for every angle (i.e, one would have to interpolate the image to define 
the projection). 

9.3 Convolution and 2-D Filters 

A 2-D linear, shift-invariant (LSI) filter is a system that verifies the properties of superposition, 
scaling, and shift invariance. As in the 1-D case, a LSI filter is completely characterized by its 
unit-sample response h[n1, n2]. The 2-D unit sample δ[n1, n2] is defined by: 

1 if  n1 = n2 = 0  
δ[n1, n2] 

� 

0 otherwise  
(9.18)= δ[n1]δ[n2] =  

If x[n1, n2] is passed through a filter with impulse response h[n1, n2], the output y[n1, n2] is given  
by 

∞ ∞ 

y[n1, n2] =  h[k1, k2] x[n1 − k1, n2 − k2] =  x[n1, n2] ∗∗  h[n1, n2] (9.19) 
k1=−∞ k2=−∞ 

In image processing, h[n1, n2] is often referred to as the convolution kernel. While the unit-
sample response of a linear system can be either finite or infinite, FIR discrete-space filters are 
by far the most important in practice. 

In most applications the convolution kernel possesses a simple symmetry. Since the image is 
usually digitized and stored, non-causal zero-phase filters are simple to implement. Based on the 
discussion above, zero-phase filters are less likely to distort the features of the image, particularly 
the critical edges. A zero phase filter satisfies the condition 

h[n1, n2] =  h[−n1,−n2]  (9.20) 

Figures 8 and 9 show examples of two simple zero-phase filters. The filter in Figure 8 has an 
impulse response given by 

1 
h[n1, n2] =  (2δ[n1, n2] +  δ[n1 +1, n2] +  δ[n1 −1, n2] +  δ[n1, n2 +1]  +  δ[n1, n2 −1]) (9.21a)

6 

Using Equation (9.11b), it is straightforward to show that the frequency response of this filter 
is 

1 
H(f1, f2) = (1 + cos 2πf1 + cos  2πf2)  (9.21b)

3 
This filter has unity gain at DC and has zeros for |f1| = |f2| = 1/3: It is a lowpass filter. 

The filter in Figure 9 has impulse response is given by 

1 
h[n1, n2] =  (4δ[n1, n2] − δ[n1 + 1, n2] − δ[n1 − 1, n2] − δ[n1, n2 + 1]  − δ[n1, n2 − 1]) (9.22a)

4 
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∑ ∑ 

∑ ∑  

∑ ∑  

∑ ∑  

and has a frequency response given by 

1 
H(f1, f2) =  (2  − cos 2πf1 − cos 2πf2)  (9.22b)

2 

The filter has zero gain at DC and rises to 2 as f1 and f2 both approach ±1/2: It is a highpass 
filter. 

9.3.1 Separable filters 

A filter is said to be separable if its impulse response can be written as the product of two 1-D 
impulse responses: 

h[n1, n2] =  h1[n1] h2[n2]  (9.23) 

Separable 2-D filters are important because they can greatly reduce the computational burden 
of 2-D convolutions. For separable h[n1, n2], Equation (9.19) can be written as 

∞ ∞ 

y[n1, n2] =  h1[k1] (  h2[k2] x[n1 − k1, n2 − k2]) (9.24) 
k1=−∞ k2=−∞ 

This formula reduces the 2-D convolution to a series of 1-D convolutions: Specifically, each 
row of the image is convolved with the 1-D filter h1[n1], then each column is convolved with 
h2[n2]. (Alternatively, columns could be filtered first, followed by rows.) If h[n1, n2] is an  N ×N 
function, the number of computations is reduced by a factor of N/2 compared to direct-form 
2-D convolution (9.19). 

9.4 The 2-D Discrete Fourier Transform 

An N×N signal x[n1, n2] is completely characterized by its N×N 2-D discrete Fourier transform 
X[k1, k2], which is obtained by sampling the DSFT at intervals of 1/N along both frequency 
coordinates: 

N −1 N −1 

X[k1, k2] =  x[n1, n2] e −j2π n1k1/N e −j2π n2k2/N (9.25a) 
n1=0 n2=0 

x[n1, n2] =  
1 N −1 N −1 

X[k1, k2] ej2π n1k1/N ej2π n2k2/N (9.25b)
N2 

k1=0 k2=0 

The principal applications of the 2-D DFT are spectral analysis and the efficient implementation 
of convolutions. As in the 1-D case, the inverse DFT of the product of two DFT’s gives the 
cyclic convolution rather than the linear convolution of the two signals: 

x[n1, n2] ∗©N h[n1, n2] ←→ X[k1, k2]H[k1, k2]  (9.26a)© ∗  

where 
N −1 N −1 

x[n1, n2] ∗©N h[n1, n2] 
� 

x̃[k1, k2] h̃[n1 − k1, n2 − k2] (9.26b)© ∗  = 
k1=0 k2=0 
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∑	 ∑ 

∑ 

∑ 

and x̃[n1, n2] and  h̃[n1, n2] are formed by repeating x[n1, n2] and  h[n1, n2] respectively at intervals 
of N samples along both coordinates. If x[n1, n2] is an  L× L signal, and h[n1, n2] is an  M × M 
filter, it is necessary to use a DFT of length N ≥ L + M − 1 for the cyclic convolution to 
give the same result as linear convolution. In practice, the differences between linear and cyclic 
convolutions are only visible near the borders of the filtered image, where there are usually few 
features of interest. For this reason, circular convolutions (without zero-padding) are often used 
in image processing. 

The direct application of the DFT formula (9.25a) requires N2 × N2 multiplications, which 
would be computationally prohibitive for all but the smallest images. Fortunately, it is possible 
to use 1-D fast Fourier algorithms to achieve considerable savings in the computation of 2-D 
DFT’s. The key to such savings is the separability of the Fourier transform. The DFT formula 
(9.25a) can be rewritten as: 

⎛	 ⎞ 
N −1	 N −1 ⎠X[k1, k2] =  e −j2π n1k1/N ⎝ x[n1, n2] e −j2π n2k2/N 

n1=0 n2=0 

Let z[n1, k2] be the expression inside the parentheses: 

N −1 

z[n1, k2] =  x[n1, n2] e −j2π n2k2/N 

n2=0 

This represents the 1-D DFT of x[n1, n2] (in which n1 is a fixed parameter), i.e. the DFT of 
one column of the image. The 2-D DFT can now be written as 

N −1 

X[k1, k2] =  z[n1, k2] e −j2π n1k1/N 

n1=0 

This is the 1-D DFT of z[n1, k2], where now k2 is a fixed parameter, i.e. the DFT of one row of 
the intermediate image z[n1, k2]. 

Thus, an N × N DFT can be computed by the following sequence of operations: 

1.	 Compute the 1-D DFT of each column in x[n1, n2]. This gives an intermediate 
image z[n1, k2]. 

2.	 Compute the 1-D DFT of each row in z[n1, k2], giving X[k1, k2]. 

Obviously, it would also be possible to first transform each row, then each column of the inter­
mediate image without changing the final result. If each 1-D DFT requires N log2 N multipli­
cations, either procedure will require a total of 2 N2 log2 N multiplications, which constitutes a 
decrease by a factor of N2/(2 log2 N) over the direct method (9.25a). For example, for a typical 
512 × 512 image, the savings in computation would amount to a factor of nearly 15,000! This 
shows that fast Fourier algorithms are even more important in image processing than in 1-D 
signal processing. 
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9.5 2-D random signals 

The theory of 2-D random signals is a straightforward extension of the 1-D case. The mean, or 
space average of a 2-D discrete random signal x[n1, n2] is defined as: 

� 1 N N 

< x[n1, n2] >= lim x[n1, n2]  (9.27)
N→∞ (2N + 1)2 

n1=−N n2=−N 

As in the 1-D case, this definition is only meaningful if x[n1, n2] is stationary, i.e. if its statistical 
characteristics do not vary greatly over space. In practice, such infinite space averages are usually 
estimated from averages over a finite region of space. In contrast to 1-D signals, which are often 
zero-mean, 2-D signals usually have a non-zero mean because images take positive gray-scale 
values. 

The 2-D autocorrelation is a function of two lag variables k1 and k2: 

Rx[k1, k2] =< x[n1, n2] x[n1 + k1, n2 + k2] > (9.28a) 

The autocorrelation function is symmetric with respect to the origin 

Rx[−k1,−k2] =  Rx[k1, k2], (9.28b) 

and maximum at the origin 
Rx[k1, k2] ≤ Rx[0, 0] = Px (9.28c) 

The crosscorrelation function of two random signals x[n1, n2] and  y[n1, n2] is  

Rxy[k1, k2] =< x[n1, n2] y[n1 + k1, n2 + k2] >= Ryx[−k1,−k2]  (9.29) 

The power spectrum is the Fourier transform of the autocorrelation function 

∞ ∞ � −j2π n1f1 −j2π n2f2Sx(f1, f2) =  Rx[k1, k2] e e (9.30) 
n1=−∞ n2=−∞ 

As in the 1-D case, it is always real and positive. The cross-spectrum Sxy(f1, f2) is the Fourier 
transform of the crosscorrelation function. 

If a random signal x[n1, n2] is input to a linear filter h[n1, n2], the output y[n1, n2] verifies the 
following properties: 

< y[n1, n2] > = H(0, 0) x[n1, n2]  (9.31a) 

Sy(f1, f2) =  |H(f1, f2)|2 Sx(f1, f2)  (9.31b) 

Sxy(f1, f2) =  H(f1, f2) Sx(f1, f2)  (9.31c) 

The Wiener filter, which gives the linear, least-squares estimate of y[n1, n2] given  x[n1, n2] is  

H(f1, f2) =  
Sxy(f1, f2) (9.32)
Sx(f1, f2) 
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9.6 Image enhancement 

Image enhancement refers to image processing that makes an image more suitable for inspection 
by a human observer or automatic analysis by a digital computer. Image enhancement is usually 
needed when an image is captured under bad lighting conditions, or when specific aspects of 
the image, such as edges, need to be emphasized. Image enhancement techniques vary widely 
depending on the images that are being processed and the nature of the application. 

9.6.1 Histogram modification 

Perhaps the simplest enhancement technique is to change the distribution of the image bright­
ness. Let us define fx(i) to be the probability that a given pixel x[n1, n2] has a brightness 
corresponding to i, where  i is normalized so that it ranges between 0 and 1. In practice, fx(i) 
is estimated empirically by computing a histogram of the individual pixels x[n1, n2]. 

Figure 9.10a,b shows an image and its corresponding distribution fx(i). The image in Figure 
10a has inadequate contrast, that is, all pixel values lie in a narrow range. The contrast can be 
improved by remapping the brightness levels of the original image to widen the distribution of 
intensities. Specifically, a new image y[n1, n2] is formed such that  

y[n1, n2] =  g(x[n1, n2]) (9.33) 

where g(.) is a monotonically increasing function applied to each pixel of the original image, 
shown in Figure 10c. Let us represent the distribution of the intensities in the remapped image 
by fy(j). Figure 10e shows fy(j) for a remapped version of the original image, and Figure 10d 
shows the enhanced image y[n1, n2]. Much more detail is visible in the enhanced image. 

It is straightforward to show that the relationship between the new brightness level j and the 
original brightness level i is given by 

j = g(i) =  Fy 
−1( Fx(i) ), (9.34) 

where Fy(j) and  Fx(i) are the cumulative probability density functions corresponding to fy(j) 
and fx(i), respectively:


i


Fx(i) =  fx(k)  (9.35a) 
k=0 

and 
j 

Fy(j) =  fy(k)  (9.35b) 
k=0 

In practice, for discrete-valued images, it is not in general possible to find a function g(.) that  
will exactly map an input histogram fx(i) to a desired histogram fy(j), so that Equation (9.34) 
is only an approximation. In the special case when the enhanced image has a fairly uniform 
distribution (i.e. fy(j) ≈ 1), the approach is referred to as “histogram equalization”. Histogram 
equalization makes maximal use of the eye’s ability to distinguish between different gray levels. 
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9.6.2 Local Gray level modification 

Sometimes an image may lack contrast, in spite of the fact that, on the whole, some parts of the 
image are much brighter than others. In such cases, the brightness distribution is sufficiently 
broad, so that global gray scale modification will not provide any real enhancement. The problem 
is not that the overall dynamic range of the brightness is too small, but that the local dynamic 
range in any particular region of the image is too small. The result is that the overall variation 
in brightness overshadows the local variations. 

One solution is to adjust the intensity of each pixel based on the intensity of its neighbors. A 
simple approach is to change the value of a pixel x[n1, n2] on the basis of the mean and variance 
of the brightness in the neighborhood of the pixel. If we choose a neighborhood of ±M pixels 
we can compute the mean and variance as 

1 M M 

μ[n1,n2] =  x[k1, k2]  (9.36a)
(2M + 1)2 

k1=−M k2=−M 

1 M M 

σ2[n1,n2] =  (x[k1, k2] − μ[k1,k2])2 (9.36b)
(2M + 1)2 

k1=−M k2=−M 

We can then create a new image y[n1, n2] using the transformation given by 

A 
y[n1, n2] =  (x[n1, n2] − μ[n1,n2]) + g(μ[n1,n2]) (9.37)

σ[n1, n2] 

The first part of the transformation simply increases/decreases the deviation of x[n1, n2] from  the  
local mean depending on whether the local variance is low/high. This has the effect of making 
the local contrast more uniform. The constant A is chosen to provide the desired amount of 
contrast. The second half of the transformation represents a gray scale remapping of the local 
mean with the function g(.). In the case of an image such as Figure 11a, the local mean is 
remapped to be more uniform over the entire image. 

Other variations on this method exist. For example, instead of using the local mean and standard 
deviation, one can develop a related approach based on a lowpass filtered image (similar to the 
local mean) and a complementary highpass filtered image. 

9.6.3 Image sharpening and softening 

Certain kinds of image enhancement can be accomplished by the application of simple linear 
filters. For example, consider the situation when the image x[n1, n2] can be approximately 
decomposed into low and high frequency components: 

x[n1, n2] =  xL[n1, n2] +  xH [n1, n2]  (9.38) 

where xL[n1, n2] represents the low frequency components of the image, while xH [n1, n2] repre­
sents the higher frequency components. As a generalization, xL[n1, n2] is usually associated with 
the smooth variations in the regional brightness of an image, whereas xH [n1, n2] is associated 
with the local contrast and actual details of the image. 
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Linear filters can be used to change the relative contributions of xL[n1, n2] and  xH [n1, n2]. A 
filter such as the one shown in Figure 8 reduces xH [n1, n2], and thereby reduces the apparent 
contrast of an image. A lowpass filter is a softening filter which makes an image appear more 
hazy. An example of the blurring due to lowpass filtering is shown in Figure 11. In contrast, 
a filter such as the one shown in Figure 9 removes xL[n1, n2] and increases xH [n1, n2]. A filter 
which increases the relative contribution of xH [n1, n2] is a sharpening filter which emphasizes 
edges and makes an image appear more vibrant. 

Figure 12 shows examples of highpass filtering in combination with histogram equalization. 
Figure 12a,b shows an original image of a chest X-ray and the image filtered with a highpass filter 
similar to the one shown in Figure 9. The filter removes the xL[n1, n2] component, eliminating 
much of the dark/light variation and emphasizing the higher-frequency features features such as 
the ribs. Figure 12c shows the result of processing similar to that of Figure 12b, except that the 
low frequency component xL[n1, n2] is not completely filtered out. Maintaining some xL[n1, n2] 
helps restore the larger features such as the heart and the arm. Figure 12d shows the image 
in Figure 12c after histogram equalization. The arm and heart are even more visible in the 
equalized image. 

9.6.4 Homomorphic filtering 

For many images, particularly those that are obtained photographically, the brightness of each 
pixel can be written in terms of the incident light intensity and a reflectivity coefficient 

x[n1, n2] =  i[n1, n2] r[n1, n2]  (9.39) 

Here i[n1, n2] represents the intensity of the light incident on the image object, and r[n1, n2] 
represents the reflectivity of the object. The amount of light that would be recovered from the 
object is the product of the incident and reflected terms. Sometimes is desirable to eliminate 
the variation in the lighting intensity, either as a means of overcoming the poor lighting, or 
for compressing the dynamic range of the image. In such cases it is useful to operate on the 
logarithm of the image 

log x[n1, n2] =  log  i[n1, n2] + log  r[n1, n2]  (9.40) 

where the log function is evaluated individually for each pixel. 

The use of this formalism assumes that the illumination component i[n1, n2] varies slowly and 
is responsible for changes in the overall dynamic range of the image, while the reflectance 
component r[n1, n2] varies more rapidly and is the responsible for local contrast. Under these 
conditions, log i[n1, n2] and  log  r[n1, n2] can be likened to xL[n1, n2] and  xH [n1, n2], respectively. 
By selecting an appropriate sharpening filter which reduces log i[n1, n2], the filtered image can 
be computed from Equation (9.40) as 

y[n1, n2] =  e h[n1,n2]∗∗log x[n1,n2] (9.41) 

where the exponential is evaluated individually for each pixel of the 2-D convolution result. A 
system which performs a logarithmic operation, followed by a linear operation, followed by an 
exponentiation operation is referred to as a homomorphic system for multiplication. 
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Figure 13 shows both an original image and the image processed by a homomorphic filter. In 
practice, the filter h[n1, n2] is chosen to have a gain less than 1 at frequencies corresponding 
primarily to i[n1, n2] and a gain greater than 1 at frequencies corresponding primarily to r[n1, n2]. 

9.6.5 Edge Detection 

An edge in an image is a boundary or contour at which a significant change occurs in some 
property of the image, e.g. brightness, or texture. Edge detection consists in automatically 
detecting these boundaries in an image. It is often a first step in systems for image analysis and 
image recognition because edges contain important information for segmenting an image into 
different objects. 

Techniques for edge detection can be based either on the gradient or the Laplacian of an image. 
The gradient is the generalization to 2 or more dimensions of the 1-D derivative of a signal. 
Specifically, the gradient of a 2-D, continuous image x(t1, t2) is a vector defined by 

∂x(t1,t2)� ∂t1∇x(t1, t2) =  
∂x(t1,t2) (9.42a) 

∂t2 

For edge detection, one is usually interested in the magnitude of the gradient: 

� 
( 

∂x(t1, t2) 
)2 ( 

∂x(t1, t2)
)2 

|∇x(t1, t2)| = +  (9.42b)
∂t1 ∂t2 

Because the gradient emphasizes changes in the images, it is expected to show a local maximum 
at the edges of an image. 

For discrete images, the gradient can be approximated in a number of ways. Perhaps the simplest 
approximation is: 

∂x(t1, t2) x[n1 + 1, n2] − x[n1, n2]≈ (9.43a)
∂t1 T 

and 
∂x(t1, t2) x[n1,n2 + 1]  − x[n1, n2]≈ (9.43b)

∂t2 T 
where T is the sampling interval, assumed to be the same for both coordinates. In practice, T can 
be eliminated from the equations because, for edge detection, we are only interested in relative 
values of the gradient. The formulas (9.43ab) can be seen as a convolution of x[n1, n2] with the  
two filters whose unit sample responses are shown in Figure 14ab. This simple approximation 
gives poor results for noisy images because it gives many spurious edges. In order to obtain 
smooth gradient estimates, it is preferable to use the 3x3 filters shown in Figure 14cd, which are 
known by the name of Sobel’s gradient. To complete edge detection, the gradient magnitude is 
computed for every pixel, and then compared with a threshold. Pixels for which the gradient 
exceeds threshold are edge candidates. Figure 15 shows an example of edge detection based on 
Sobel’s gradient approximation. 

Another class of methods for edge detection is based on the Laplacian of the image. The 
Laplacian, which is a generalization of the second derivative, is defined by 

� ∂2x(t1, t2) ∂2x(t1, t2)∇2 x(t1, t2) =  
∂t21 

+ 
∂t22 

(9.44) 
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At an edge, the gradient is maximum, and therefore the Laplacian, which is effectively a deriva­
tive of the gradient, is zero. Therefore, in edge detection, one seeks zero crossings of the Lapla­
cian. 

For discrete images, the second derivatives can be approximated by 

∂2x(t1, t2) ≈ x[n1 + 1, n2] − 2x[n1, n2] +  x[n1 − 1, n2]  (9.45a)
∂t21 

and 
∂2x(t1, t2) 

∂t22 
≈ x[n1, n2 + 1]  − 2x[n1, n2] +  x[n1, n2 − 1] (9.45b) 

Therefore, a reasonable Laplacian approximation is 

∇2 x(t1, t2) ≈ x[n1 +1, n2] +  x[n1 − 1, n2] +  x[n1, n2 +1]  +  x[n1, n2 − 1] − 4x[n1, n2] (9.46) 

This operation is a convolution by the 3x3 kernel shown in Figure 14e (Note that this is the 
negative of the filter shown in Figure 9). 

One problem with Laplacian-based methods for edge detection is that they generate many false 
edges in regions where the variance of the image is small. One way to circumvent this problem 
is to require that the local variance exceed a certain threshold before accepting a zero crossing 
of the Laplacian as an edge. The local variance can be estimated using Equation (9.36b). 

Both gradient-based and Laplacian-based methods only provide candidate edges. In order to 
identify actual boundaries between objects, it is further necessary to connect edges that belong 
to the same contour, and to eliminate spurious edges. This edge thinning process, which requires 
a great deal of heuristics, is beyond the scope of these notes. 

9.7 Image restoration 

Although there is a substantial grey zone, a distinction is usually made between image enhance­
ment and image restoration. Restoration refers to the elimination of some distortion which has 
degraded the image. The distortion can be as simple as additive or multiplicative noise, or as 
complex as stretching or dislocation of parts of the image. 

9.7.1 Noise removal with linear filters and median filters 

As in the 1-D case, linear filters are useful for separating 2-D signals from noise, particularly 
when the signal and the noise occupy different frequency bands. For examples, Figure 16a shows 
an image corrupted by additive 2-D sinusoidal noise. The Fourier transform magnitude of this 
noisy image is shown in Figure 16b. The bright dot at the center corresponds to the original 
image, while the symmetric dots on the diagonal represent the sinusoidal noise. A simple band-
reject filter centered at the two symmetric dots, when applied to the image in Figure 16a yields 
the result in Figure 16c. 
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While linear filters are useful for deterministic, sinusoidal noise or for statistically uniform ran­
dom noise, they do not work as well for impulsive noise known as salt-and-pepper noise. Salt-
and-pepper noise is characterized by large spikes in isolated pixels. A typical example is random 
bit errors in a communication channel used to transmit images. Only a small fraction of the 
pixels in the image are affected, but the error in the affected pixels is often great. Median filters 
are well suited for this kind of noise. 

A median filter picks the median value of a set of numbers. Whereas for a 1-D linear, rectangular 
(boxcar) filter of length N the result is the average of the N data points encompassed by the 
filter, for a 1-D median filter of length N the result is the median value of the N data points 
spanned by the filter. This principle is directly generalized to define a 2-D median filter. 

Figure 17ab shows an original image and the same image contaminated by salt-and-pepper noise. 
Figure 17c shows the image filtered by a 5x5 linear boxcar filter. The linear filter does not do 
a very good job of restoring the image. Figure 17d shows the result of a 5x5 2-D median filter 
applied to the noisy image. The median filter introduces less blurring than the linear filter, 
while almost entirely eliminating the noise. 

9.7.2 Reduction of image blur 

In many situations the acquired image is a blurred version of the original image. The blurring 
can usually be modeled as convolution with a blurring function b[n1, n2] whose Fourier transform 
is B(f1, f2). This blurring function is sometimes referred to as the point spread function. 

If x[n1, n2] is the original image and y[n1, n2] is the blurred image, then we have 

y[n1, n2] =  b[n1, n2] ∗ ∗ x[n1, n2], (9.47a) 

Y (f1, f2) =  B(f1, f2) X(f1, f2). (9.47b) 

A simple solution for restoring x[n1, n2] from  y[n1, n2] is to define the inverse filter 

1 
H(f1, f2) =  , (9.48)

B(f1, f2) 

which can then be used to filter y[n1, n2]. A problem with this approach is that H(f1, f2) can  
take on extremely high values at points where B(f1, f2) is close to zero. Even small amounts of 
noise (e.g quantization noise, or computation noise) can lead to huge errors in the reconstruction 
of x[n1, n2]. One way of avoiding this problem is to choose a suitable threshold γ and use the 
inverse filter given by { 1 if 1 < γB(f1,f2) |B(f1,f2)|H(f1, f2) =  |B(f1,f2)| (9.49)

γ otherwise B(f1 ,f2) 

The effect of Equation (9.49) is to cap the maximum value of |H(f1, f2)| at γ. 

Figure 18b shows an image blurred by a lowpass filter b[n1, n2] with a low cutoff frequency. 
Figure 18cd show the image restored by inverse filtering with two different thresholds γ. While 
the value of γ in Figure 18c was chosen to exclude excessively small values of B(f1, f2), this 
condition was not verified in Figure 18d, leading to a useless result. Figure 19 shows another 
example in which blurring due to uniform linear motion was eliminated by inverse filtering. 
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9.7.3 Wiener filtering 

A very common situation is one in which the measured signal x[n1, n2] consists of the true signal 
y[n1, n2] contaminated with additive noise η[n1, n2] 

x[n1, n2] =  y[n1, n2] +  η[n1, n2]. (9.50) 

We further assume that the noise is stationary, and uncorrelated with y[n1, n2]. The Wiener 
filter that gives the least-squares estimate of y[n1, n2] from  x[n1, n2] is derived for this set of 
assumptions in the 1-D case. (See Chapter 12.) The result is identical in the 2-D case, and is 
given by 

Sxy(f1, f2) Sy(f1, f2)
H(f1, f2) = =  (9.51)

Sx(f1, f2) Sy(f1, f2) +  Sη(f1, f2) 

In practice, Sy(f1, f2) and  Sη(f1, f2) would be estimated either from a priori information, or 
from data giving the signal relatively free of noise and vice-versa. 

9.7.4 Reduction of blurring and additive random noise 

As we saw above, a simple inversion approach to the blurred image problem provides a poorly-
behaved filter H(f1, f2) = 1/B(f1, f2), especially in the presence of any amount of noise. In 
practice, we always encounter some kind of noise, even if it is only the quantization noise of 
image digitization. If we augment Equation (9.47a) to include an additive noise term η[n1, n2], 
we get 

x[n1, n2] =  b[n1, n2] ∗ ∗ y[n1, n2] +  η[n1, n2]  (9.52) 

where η[n1, n2] is assumed to be uncorrelated with y[n1, n2]. The Wiener Filter for this more 
elaborate model can be easily derived using the results of Chapter 12. Let z[n1, n2] be the  result  
of the convolution b[n1, n2] ∗ ∗  y[n1, n2]. Because η[n1, n2] is uncorrelated with y[n1, n2], and 
therefore with z[n1, n2] which is derived linearly from y[n1, n2], one has: 

Sxy(f1, f2) =  Szy(f1, f2)  (9.53a) 

and 
Sx(f1, f2) =  Sz(f1, f2) +  Sη(f1, f2)  (9.53b) 

Because z[n1, n2] is derived from y[n1, n2] by filtering through b[n1, n2], on has, from (9.31): 

S ∗ Szy(f1, f2) =  yz(f1, f2) =  B ∗(f1, f2) Sy(f1, f2)  (9.54a) 

where B∗(f1, f2) is the complex conjugate of B(f1, f2), and 

Sz (f1, f2) =  |B(f1, f2)|2 Sy(f1, f2)  (9.54b) 

Thus, the Wiener restoration filter is 

Sxy(f1, f2) B∗(f1, f2) Sy(f1, f2)
H(f1, f2) = =  (9.55)

Sx(f1, f2) |B(f1, f2)|2Sy(f1, f2) +  Sη(f1, f2) 

Three special cases are of interest: First, if Sη(f1, f2) = 0 (i.e. if there is no noise), H(f1, f2) 
reduces to the inverse filter 1/B(f1, f2) in Equation (9.48). Second, if B(f1, f2) = 1 (i.e. if 
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there is no blur), H(f1, f2) reduces to Equation (9.51) as expected. Third, if |B(f1, f2)| becomes 
very small, the Wiener filter becomes: 

B∗(f1, f2) Sy(f1, f2)
H(f1, f2) ≈ (9.56)

Sη(f1, f2) 

The value of this expression goes to zero rather than infinity, i.e. incorporating the noise η[n1, n2] 
into the model automatically gives Equation (9.55) the desirable properties which needed to be 
artificially built into Equation (9.49). 

Note that the Wiener filter can be rewritten as: 

1 Sz(f1, f2)
H(f1, f2) =  (9.57)

B(f1, f2) Sz(f1, f2) +  Sη(f1, f2) 

This can be seen as the cascade of the inverse filter 1/B(f1, f2) and a noise reduction filter for 
z[n1, n2]. The overall system is thus a cascade of a noise reduction filter and a deblurring filter. 

Figures 20 and 21 show examples of Wiener filtering. Figure 20a shows three images that were 
both blurred and degraded by additive noise. Figure 20b show the corresponding Fourier spectra. 
The signal-to-noise ratio increases from top to bottom. Figure 20c shows these images processed 
by an inverse filter. The resulting images are completely masked by the noise. Figure 20d shows 
the three images processed by a Wiener filter as in (9.55). In this case, the dominos present in 
the original image are clearly visible, particularly for the bottom two images. Figure 21a shows 
an original image, and Figure 21b the image blurred and degraded by additive noise. Figure 
21c shows the result of inverse filtering. Although the blur is removed, the noise is actually 
enhanced. Figure 21d shows the image processed by an approximation to the Wiener filter that 
removed the blur without excessively adding noise. 

9.8 Further Reading 

Lim, J.S., Two-Dimensional Signal and Image Processing, Prentice Hall, 1990 (Chapters 1, 8,

9).

Gonzalez, R.C., and Woods, R.E., Digital Image Processing, Addison-Wesley, 1993 (Chapters 3,

4, 5).
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Photos removed due to copyright restrictions.

Five photos selected from Figs. 2.9, 2.10 and 2.11 in Gonzalez and Woods, 1993. 


Figure 9.1: (From Gonzalez and Woods, pp. 35–37) Effects of spatial resolution and quantization. 
(a) 1024 × 1024 image displayed in 256 gray levels. (b) 128 × 128 image displayed in 256 gray 
levels. (c) 32 × 32 image displayed in 256 gray levels. (d) 1024 × 1024 image displayed in 8 gray 
levels. (e) 1024 × 1024 image displayed in 2 gray levels. 

Figure removed due to copyright restrictions. 
Fig 3.2 in Gonzalez and Woods, 1993. 

Figure 9.2: (From Gonzalez and Woods, p. 85) (a) A 2-D rectagular (boxcar) filter and its 2-D 
Fourier transform displayed (b) in perspective and (c) as a gray-scale image. 

Figure removed due to copyright restrictions.

Fig 3.3 in Gonzalez and Woods, 1993. 


Figure 9.3: (From Gonzalez and Woods, p. 87) Three simple images (left) and their Fourier 
transform magnitudes (right). 

Figure removed due to copyright restrictions. 
Fig 3.10 in Gonzalez and Woods, 1993. 

Figure 9.4: (From Gonzalez and Woods, p. 99) (a) A simple image, and (b) its Fourier transform 
magnitude. (c) Rotated image, and (d) its Fourier transform magnitude. 

19


Cite as: Paul Albrecht, Julie Greenberg, and Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical 
Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. 
Downloaded on [DD Month YYYY]. 



Figures removed due to copyright restrictions. 
Fig 1.25 and 1.26 in Lim, 1990. 

Figure 9.5: (From Lim, pp. 31-32) (a) The function J1(x)/x, where  J1(x) is the first order Bessel 
function of the first kind. (b) Impulse response of an ideal 2-D lowpass filter. 

Figure removed due to copyright restrictions.

Fig 1.28 in Lim, 1990. 


Figure 9.6: (From Lim, p. 35) (a) and (b) Two original images. (c) Image formed by combining 
the magnitude of the Fourier transform of (b) with the phase of the Fourier transform of (a). 
(d) Image formed by combining the magnitude of (a) with the phase of (b). 

Figure removed due to copyright restrictions.

Fig 1.42 in Lim, 1990. 


Figure 9.7: (From Lim, p. 48) (a) Image digitized with antialiasing lowpass filter. (b) Image 
with noticeable aliasing. 
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Figure 9.8: (a) Impulse-response of a simple 2-D digital lowpass filter. (b) Magnitude of the 
frequency response for the same filter. 

Figure 9.9: (a) Impulse-response of a simple 2-D digital highpass filter. (b) Magnitude of the 
frequency response for the same filter. 
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Figure removed due to copyright restrictions. 
Fig 8.5 in Lim, 1990. 

Figure 9.10: (From Lim, pp. 460–461) (a) An image with poor contrast. (b) Histogram of 
the gray-level distribution of the original image. (c) Transformation function used for gray-
scale modification. (d) Image after gray-scale modification. (e) Histogram of the gray-level 
distribution after gray-scale modification. 

Figure removed due to copyright restrictions. 
Fig 4.22 in Gonzalez and Woods, 1993. 

Figure 9.11: (From Gonzalez and Woods, p. 193) (a) Original image. (b)-(f) Results of lowpass 
filtering (blurring) the original image with a 2-D rectangular filter of size N × N , where  N = 
3, 5, 7, 15, 25. 

Figure removed due to copyright restrictions. 
Fig 4.39 in Gonzalez and Woods, 1993. 

Figure 9.12: (From Gonzalez and Woods, p. 214) (a) Original image. (b) Image sharpened by 
a highpass filter. (c) Image sharpened by a highpass filter that does not completely remove the 
DC component. (d) Image from (c) processed by histogram equalization. 

Figure removed due to copyright restrictions. 
Fig 4.42 in Gonzalez and Woods, 1993. 

Figure 9.13: (From Gonzalez and Woods, p. 217) (a) Original image. (b) Image processed by 
homomorphic filtering. 
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Figure 9.14: Filters used in edge detection. (a) Horizontal and (b) vertical components of a 
simple gradient approximation. (c) Horizontal and (d) vertical components of Sobel’s gradient. 
(e) Laplacian. 
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Figures removed due to copyright restrictions. 
Fig 8.30a and 8.31a in Lim, 1990. 

Figure 9.15: (From Lim, pp. 484-485) (a) An image. (b) Result of applying Sobel’s gradient-
based edge detector to the image in (a). 

Figure removed due to copyright restrictions. 
Fig 5.7 in Gonzalez and Woods, 1993. 

Figure 9.16: (From Gonzalez and Woods, p. 290) (a) Image corrupted by additive sinusoid and 
(b) the magnitude of its Fourier transform. (c) Image restored by linear bandstop filter. 

Figure removed due to copyright restrictions.

Fig 4.23 in Gonzalez and Woods, 1993. 


Figure 9.17: (From Gonzalez and Woods, p. 194) (a) Original image. (b) Image corrupted by 
additive salt-and-pepper noise. (c) Image processed by 5x5 rectangular boxcar filter. (d) Image 
processed by 5x5 median filter. 

Figure removed due to copyright restrictions.

Fig 5.3 in Gonzalez and Woods, 1993. 


Figure 9.18: (From Gonzalez and Woods, p. 273) (a) Original image. (b) Blurred image. (c) 
Image restored by capped inverse filter. (d) Image restored by inverse filter in which the cap 
was set higher than in (c). 
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Figure removed due to copyright restrictions. 
Fig 5.4 in Gonzalez and Woods, 1993. 

Figure 9.19: (From Gonzalez and Woods, p. 278) (a) Image blurred by uniform linear motion. 
(b) Image restored by inverse filtering. 

Figure removed due to copyright restrictions. 
Fig 5.5 in Gonzalez and Woods, 1993. 

Figure 9.20: (From Gonzalez and Woods, p. 281) (a) Images blurred and degraded by additive 
noise and (b) the magnitudes of their Fourier transforms. (c) Images restored by inverse filtering. 
(d) Images restored by Weiner filtering, and (e) the magnitudes of their Fourier transforms. 

Figure removed due to copyright restrictions. 
Fig 5.6 in Gonzalez and Woods, 1993. 

Figure 9.21: (From Gonzalez and Woods, p. 288) (a) Original image. (b) Image blurred and 
degraded by additive noise. (c) Image restored by inverse filtering. (d) Image restored by 
approximate Wiener filter. 
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