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Chapter 8 - LINEAR PREDICTION 
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Introduction 

Linear prediction is a widely-used signal processing technique in which the current value of a 
discrete-time signal is approximated by a finite weighted sum of its past values. It is mathemat­
ically equivalent to the techniques of autoregressive spectral estimation, and maximum-entropy 
spectral estimation. The central idea behind these techniques is that the signal is modeled as 
the response of an all-pole (autoregressive) filter to a white signal. Spectral estimation is then 
equivalent to estimating the coefficients of the all-pole filter. These techniques are well suited 
to signals whose spectra show sharp peaks such as the formants of speech. 

In the case of speech signals, linear prediction takes a special significance in the context of the 
source-filter model of speech production. According to this model, speech is the output of a 
time-varying filter (representing the vocal tract resonances and radiation characteristics) ex­
cited by either a voicing source or a noise source (Fig. 1a). Under certain assumptions, linear 
prediction can separate the contributions of the source and the filter to the speech signal, i.e. 
it can deconvolve the source signal from the impulse response of the filter. This property con­
trasts with those of the short-time Fourier transform, which provides a spectral representation of 
speech in which effects of the source and the filter are scrambled, and which is heavily dependent 
on the choice of an analysis window. The deconvolution property of linear prediction is useful 
in biomedical applications because the source and the filter correspond to different anatomi­
cal structures, and are therefore affected by different clinical conditions. Linear prediction is 
also widely used in telecommunication engineering and automatic speech recognition because it 
represents speech in terms of a small number of parameters that contain the most important 
information for intelligibility. 

8.1 All-pole model of speech 

8.1.1 From the source-filter model to the all-pole model 

In order to show how linear prediction can separate the contributions of the source and the filter 
to speech, we need to simplify somewhat the speech-production model of Fig. 1a by making two 
additional assumptions: (1) that the filter is all-pole (purely-recursive, or autoregressive) and 
(2) that the source is ”white” in the sense that it has a flat spectral envelope. 

The all-pole assumption makes intuitive sense because the transfer function of the vocal tract 
shows sharp peaks associated with the formant frequencies, which are well modeled by all-pole 
filters (digital resonators). In fact, acoustic theory shows that, if the source is at one end of the 
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vocal tract (as occurs for voiced sounds), and if the vocal tract does not have any side branches,
then the transfer function of the vocal tract is all-pole. Although these conditions do not exactly
hold for all speech sounds, the all-pole model is a reasonable approximation that gives useful,
mathematically-simple results. The all-pole model is particularly useful for modeling formant
frequencies of speech, which are very important perceptually.

The second assumption of linear prediction can be justified for voiced sounds by noting that the
source signal can be considered as the output of a filter excited by a periodic train of impulses
(Fig. 1b). This filter can be combined with the vocal-tract transfer function and the radiation
characteristics to generate the simplified model of Fig. 1c: Voiced speech sounds are now the
output of a combined filter excited by a periodic train of impulses. For voiceless sounds, no
changes are necessary to the model of Fig. 1a because the noise source is nearly white over the
frequency range of interest. For both voiced and voiceless sounds, the important characteristic
of the model of Fig. 1c is that the spectrum of the source has a flat envelope,1 so that any
frequency dependence in the spectral envelope of speech must be due to the filter, rather than
the source.

If the all-pole model of Fig. 1c holds, the speech signal s[n] can be generated from the source
signal u[n] by means of a purely-recursive difference equation:

p

s[n] =
k

∑
ak s[n

=1

− k] + G u[n] (8.1a)

The frequency response of the all-pole filter is

G
H(f) = (8

1 − p .1b)
k=1 ak e−j2πkf

Our goal is to estimate the filter coefficients

∑
ak, 1 ≤ k ≤ p and the gain G from the speech

signal s[n], assuming (for the moment) that the model order p is known. If the source signal
u[n] were known, this would be a simple problem that could be solved, for example, by division
in the frequency domain. However, in most applications, the source signal is not available, and
the model parameters have to be determined from the speech signal s[n] alone. While such
blind deconvolution problems cannot be solved in general, this is possible in the case of speech
because of the additional assumptions that the filter is all-pole and that the source has flat
spectral characteristics.

8.1.2 Relation of linear prediction to the all-pole model

In order to understand why linear prediction provides an estimate of the all-pole model param-
eters, it helps to assume that the source signal u[n] in (8.1a) is small. The speech signal is then
approximately a weighted sum of its p past values:

p

s[n] ≈
∑

ak s[n− k] if u[n] 2)
k

≈ 0 (8.
=1

1Recall that the transform of a periodic impulse train is a periodic train of impulses in frequency, which has
a flat spectral envelope.
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The assumption of small u[n] seems plausible for voiced sounds because periodic impulse trains
are in fact zero for most times. We are thus led to introduce a linear predictor ŝ[n] of the speech
signal from its p past values:

p

ŝ[n] =
� ∑

âk s[n
k=1

− k] (8.3)

The âk, 1 ≤ k ≤ p are called the predictor coefficients. They can be considered as estimates of
the true parameters ak, 1 ≤ k ≤ p of the all-pole model. The prediction error signal e[n] is the
difference between the actual signal and the predictor:

p

e[n] =� s[n] − ŝ[n] = s[n] − âk s[n k] (8.4)
k

∑
=1

−

The error signal is the response of an FIR filter to the speech signal s[n]. The frequency response
of this filter is

p

Â(f) = 1 −
k

∑
â πkf

k e
−j2 (8.5)

=1

If the predictor coefficients âk, 1 ≤ k ≤ p were equal to the actual coefficients ak, 1 ≤ k ≤ p
of the all-pole filter H(f), one would then have:

e[n] = G u[n] (8.6a)

and
Ĝ

H(f) = (f), if âk = ak for 1
A

≤ k ≤ p

For this reason, the prediction-error filter Â(f) is also called the inverse filter for the all-pole
model filter H(f). The relationship between the source signal u[n], the speech signal s[n] and
the error signal e[n] is shown in Fig. 2a.

The linear-prediction problem consists in finding the predictor coefficients âk, 1 ≤ k ≤ p that
minimize the energy Ee in the error signal. The basic assumption of linear-prediction analysis
is that such minimization yields estimates of the true ak, 1 ≤ k ≤ p coefficients of the all-pole
model. As argued above, this assumption seems reasonable for voiced sounds because the voicing
source u[n] is an impulse train which is zero for most times. In fact, it can be shown that, if the
all-pole model holds, and if the source signal is either stationary white noise or a unit sample,
then minimization of the energy in the prediction error signal does give the correct coefficients ak

of the all-pole model. Even though these conditions are not exactly verified, this minimization
criterion is still justified in that it provides results that are both useful and computationally
simple.

The all-pole filter Ĥ(f) obtained by replacing the ak, 1 ≤ k ≤ p in (8.1b) by the optimal
predictor coefficient âk, 1 ≤ k ≤ p is called the LP model filter:

Ĥ
Ĝ

(f) =�
Ĝ

=
Â(f)

(8
1 − p .7)

k=1 âk e−j2πkf

The significance of the model filter is that it can be

∑
used to generate synthetic speech s′[n] by

filtering a synthetic source signal u′[n] (Fig. 2b). This is the principle for the synthesis stage in
analysis-synthesis systems based on linear prediction.
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Minimization of the energy in the prediction error signal can be implemented by several methods
that differ slightly in their assumptions. These differences arise from the fact that, because the
all-pole filter is time-varying, the energy cannot be minimized over the entire duration of the
speech signal, but separate minimizations must be carried out for different short-time segments
or frames of the signal. The exact manner in which these frames are defined and assumptions
about the behavior of the signal outside of the frame yield somewhat different methods of linear
prediction. Every method gives, for each frame, optimal prediction coefficients âk, 1 ≤ k ≤ p,
an inverse filter Â(f) and a model filter Ĥ(f). We give here one specific implementation, called
the autocorrelation method of linear prediction, which has the advantage of always giving stable
solutions. Alternative techniques are described by Makhoul (1975) and Marple (1987).

8.2 Autocorrelation method of linear prediction

8.2.1 Deterministic autocorrelation functions

The autocorrelation method of linear prediction takes its name from the autocorrelation function.
Broadly speaking, an autocorrelation function measures the similarity between a signal x[n] and
a delayed version of itself x[n− k]. There exist different definitions of autocorrelation functions,
each one best suited for a particular type of signal. The definition applicable to stationary
random signals is introduced in Chapter 11. Such true autocorrelation functions play a key
role in predicting the response of linear systems to random signals, and are also important
for detecting unknown periodicities in noisy signals. Because we are dealing here with finite-
duration speech frames rather than stationary signals, the appropriate form of autocorrelation
is the deterministic, or ”raw” autocorrelation function:

∞
R̃x[k] =

� ∑
x[n] x[n

n=

− k] (8.9)
−∞

Even though the sum in (8.9) goes from −∞ to +∞, it is in practice a sum of the finite duration
of a speech frame, typically 10-40 msec. The deterministic autocorrelation function has three
important properties:

1. The deterministic autocorrelation function evaluated at lag zero is the energy
in the signal:

∞
R̃ 2

x[0] =
n=

∑
x[n] =

�
Ex (8.10)

−∞

2. The autocorrelation is an even function of lag, i.e. it is symmetric with respect
to the origin:

∞ ∞
R̃x[−k] =

∑
x[n] x[n+ k] =

∑
x[m− k] x[m] = R̃x[k] (8.11)

n=−∞ m=−∞

where we made the change of variable m = n+ k.



5

Cite as: Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring
2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 

3. The deterministic autocorrelation function is always maximum at the origin:
˜|Rx[k] ˜| ≤ Rx[0] = Ex (8.12)

The latter result is another form of the Cauchy-Schwarz inequality.

8.2.2 The Yule-Walker equations

The autocorrelation method of linear prediction consists in minimizing the total energy Ee in
the error signal:

∞
Ee =�

∑
]2

∞
e[n = s s

n

∑
( [n]

=−∞ =

− [̂n])2 (8.17)
n −∞

Again, because speech is time-varying, this assumption is meaningful only if the signal s[n] in
(8.17) is a short-time frame. The autocorrelation method gives best results when each frame is
multiplied by a window tapered at both ends (e.g. Hamming) to avoid large prediction errors
near the ends of the frame.

Replacing the predictor ŝ[n] in (8.17) by its value from (8.11), we obtain
∞ p 2

Ee = s[n] âk s[n k] (8.18)
n=

∑
−∞

[
−

k

∑
=1

−
]

In order to minimize (8.18), we set to zero the partial derivatives of Ee with respect to the âk:

∂Ee
∞ p

= −2 s[n k] s[n] â n l] = 0 for 1 k p
∂â

l s[
k n=

−
−∞

[ ]∑
−
∑
l=1

− ≤ ≤

Interchanging the order of summations over n and l, and noting that
∞

n=

∑
s[n ˜− k] s[n− l] = Rs[k − l],

−∞
the deterministic autocorrelation function of the windowed signal s[n], we obtain:

p∑
â ˜

lRs[k − l] = R̃s[k] for 1
l=1

≤ k ≤ p (8.19a)

This gives a set of p linear equations to solve for the p predictor coefficients âk, 1 ≤ k ≤ p. Thus,
to derive the optimum predictor coefficients, it suffices to know the deterministic autocorrelation
function R̃s[k] for 0 ≤ k ≤ p. By expressing the energy in (8.18) as a function of the R̃s[k], it
can be shown that, if the system of equations (8.19a) is satisfied, the prediction error becomes:

p

Ee = R̃s[0] −
∑

âk R̃s[k] (8.19b)
k=1

Equations (8.19a) and (8.19b) can be combined into a single set of p+1 linear equations written
in matrix notation:

R̃ Rs[1] R̃s[0] ˜
s[2] ... R̃s[p] 1 Ee

˜ Rs[1] R̃s[0] R̃s[1] ... R̃ s[p− 1] â
R̃s[2] R̃s[1] R̃

 
−

 
0


s[0] ... R̃s[p− 2]

... ...

  1

−â


= 0 .
...

 
20) 2 ...


(8

R̃ [p] R̃ [p 1] R̃ [p 2] ... R̃s s s s[0]

 




−

 
−âp


0


−


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These equations are known as the (deterministic) Yule-Walker equations. These equations con-
tain all information needed to solve the linear prediction problem. Note the unusual position of
the unknown Ee on the right hand side of the first equation.

8.2.3 Determination of the gain

In order to obtain a complete specification of the linear-prediction model, it is necessary to
estimate the gain G in addition to the prediction coefficients âk, 1 ≤ k ≤ p. For this purpose,
remember from (8.15a) that, if the predictor coefficients âk, 1 ≤ k ≤ p were exactly equal to
the true filter coefficients ak, 1 ≤ k ≤ p, then the error signal e[n] would be equal to G u[n].
Further, the energy in the source signal u[n] is always unity by definition. This convention is
useful for synthesis. Therefore, if the model were exactly verified, the energy in the error signal
Ee would be equal the energy in G u[n], which is G2. This consideration leads us to conclude
that the gain estimate Ĝ is the square-root of the prediction error Ee:

Ĝ =
√
Ee (8.21)

8.2.4 Example

As an example, we will solve the Yule-Walker equations for a model of order 1. These equations
are: [

R̃s[0] R̃s[1]
R̃s[1] R̃s[0]

] [
1 E

= e

−â1

] [
0

]

The solutions are:
R̃ [1]

â1 = s

R̃s[0]

R̃
Ee = s[0]2 ˜− Rs[1]2

R̃s[0]

As always, the gain Ĝ is the square root of Ee. The model filter,

ˆ
Ĥ

G
(f) =

1 − â1 e−j2πf

is stable so long that |â ˜ ˜
1| < 1, implying |Rs[1]| < Rs[0]. From (8.12), this condition is always

verified. It can be shown that, for the autocorrelation method, this condition is met regardless
of model order.

8.2.5 Efficient solution by the Levinson-Durbin algorithm

The (p+1)×(p+1) matrix in (8.20) is said to be Toeplitz because all terms along its diagonals are
the same. Because of this special structure, the Yule-Walker equations can be solved recursively
by the highly efficient Levinson-Durbin algorithm. This method provides solutions for all models
of order i < p before giving the solution for order p. This is useful when the model order is



Cite as: Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring
2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 

7

not known a priori, so that different orders may be tried out before settling on a final one. In
describing the Levinson-Durbin algorithm, the notation â(i)

k is used to refer to the kth optimal
predictor coefficient for a model of order . Similarly, (i)

i Ee refers to the energy in the prediction
error signal for a model of order i. The recursion is started by setting (0)

Ee = R̃s[0]. As shown
in the Appendix, the recursive formulas for deriving solutions for model order i going from those
for order i− 1 are:

˜
â

(i)
i = ki =�

Rs[i] − ∑i−1
k=1 â

(i−1) ˜
k Rs[i− k] (8.22a)

(i−1)
Ee

ˆ(i) = ˆ(i 1)
ak a

−
k − ki â

(i−1)
i−k for 1 ≤ k ≤ i− 1 (8.22b)

E(i)
e = (1 − k2

i ) E
(i−1)
e (8.22c)

It is apparent that knowing the reflection coefficients ki for all orders 1 ≤ i ≤ p completely
specifies the predictor coefficients âk, 1 ≤ k ≤ p for order p. Due to the special properties of
the autocorrelation matrix in (8.20), it can be shown that the ki are always between −1 and
1. Together with (8.22c), this implies that the prediction error (i)

Ee always decreases when the
model order is increased. It can also be shown that the condition −1 < ki < 1 guarantees that
the model filter Ĥ(f) is stable.

8.2.6 Choice of model order

We have assumed so far that the model order p is known a priori. This is rarely the case
in practice, and the choice of model order is often a crucial question in linear prediction. An
empirical method for choosing p (which is easily implemented by the Levinson-Durbin algorithm)
is to track the energy in the error signal (p)

Ee as a function of p, and stop increasing the order
when the energy reaches a plateau. For a signal of length N , this method can be formalized
using Akaike’s information criterion:

(p)

AIC(p) = l� E
n e 2p

+
(0)

Ee

(8.23)
N

The value of p which minimizes (8.23) is chosen as the model order. The first term in the AIC
represents how well the model fits the data, and decreases monotonically as the model order is
increased. The second term 2p/N is a penalty factor for increasing the model order. This penalty
is introduced because, given a finite signal s[n] of length N , it is always possible to exactly fit
its energy spectrum |S(f)|2 by an all-pole model if p approaches N . Thus, minimizing the AIC
represents a compromise between getting a better fit to the data and using no more parameters
than can be justified on the basis of the available data.

For speech signals, an alternative method for determining the model order is to use knowledge
about speech-production mechanisms. The resonant frequencies of a typical vocal tract are
expected to be separated by intervals of approximately 1 kHz for a male voice. Thus, if the
signal is sampled at 10 kHz, there should be about five resonances within the 5-kHz range of
frequency analysis. One needs two predictor coefficients (complex conjugate poles) to model
each of these resonances, plus approximately 4 coefficients to model the voicing source spectrum
and the radiation characteristics. In fact, linear prediction of speech with a model of order
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14 does give useful results for voiced speech sampled at 10 kHz. For example, Figure 3 shows
results of a 14-th order linear prediction analysis by the autocorrelation method for a 20-ms
windowed segment of a vowel produced by a male speaker. Consistent with the assumptions of
the all-pole model of speech production, the prediction error signal shows two peaks, one for
each pitch period, and its spectrum has a flat envelope. For voiceless sounds, not all resonances
of the vocal tract are excited by the source, so that linear predictions of orders 8 to 10 usually
suffice for speech sampled at 10 kHz. Lower model orders are also suitable if the sampling rate
is less than 10 kHz because the number of resonances in the modeled frequency band decreases.

8.3 Frequency-domain interpretation of linear prediction

Further insight into linear prediction can be gained by frequency-domain analysis. In fact, in
many applications, linear prediction is used to obtain a smooth spectral representation of speech
rather than to explicitly separate the source from the filter. This usage is consistent with the
more general use of autoregressive models in spectral estimation (Sec. 8.5).

Parseval’s theorem gives an expression for the energy Ee in the error signal e[n] in terms of its
Fourier transform E(f):

∞ 1

Ee =
−∞

∑
e[n]2 =

∫
2

− 1
E

2

| (f)|2 df (8.24)

Because e[n] is generated by passing the signal s[n] through the inverse filter Â(f), i.e. e[n] =
â[n] ∗ s[n], one has:

E(f) = Â(f) S(f) ( .25)

where S(f) is the Fourier transform of s[n] (which is guaranteed to exist because s[n] is a
finite-duration speech frame). Therefore, the prediction error becomes:

Ee =
∫ 1

2

− 1
Â| (f)|2 |S(f)|2 df (8.26)

2

If we recall from (8.16) that the frequency response of the model filter is

ˆ
Ĥ

G
(f) = ,

Â(f)

we obtain

Ee = Ĝ2
∫ 1

2

− 1

|S(f)|2
2

df (8.27)
Ĥ| (f)|2

Thus, minimizing the energy in the error signal is equivalent to minimizing the integral over
frequency of the ratio of the energy spectrum of the speech segment to the energy spectrum of
the model filter. It can be shown that, when the model order p approaches the signal length N ,
the energy spectrum ˆ|H(f)|2 for the model filter approaches the energy spectrum |S(f)|2 of the
original signal*. 2 In practice, the closeness of the approximation of the signal spectrum by the
all-pole model can be controlled by varying the model order p (Fig. 4). For low model orders,

2*Note however that the predicted signal ŝ[n] does not necessarily approach the actual signal s[n] because the
phase responses can differ.

8



the model spectrum is too broad to adequately represent all the spectral peaks corresponding to 
formant frequencies. In contrast, if the order is too high, the model spectrum begins to match the 
fine structure of the source spectrum, such as individual harmonics of the fundamental frequency. 
Thus, there exists an optimal model order for which the model spectrum approximates the true 
filter spectrum with little contamination from the source spectrum. As argued above, this 
optimal order is approximately 14 for voiced speech sampled at 10 kHz. 

It should also be noted that, because the quantity that is being minimized in (8.27) is a ratio of 
the actual spectrum to the model spectrum, the approximation provided by the all-pole model is 
better when the signal spectrum shows a peak than when it shows a valley, i.e. linear prediction 
provides  a good  match  to the  spectral envelope. This property, which is apparent in Figs. 3 
and 4, is desirable in speech analysis because spectral peaks are perceptually more important 
than spectral valleys. This perceptual unimportance of spectral valleys is due to the masking 
properties of the ear. 

8.4 Applications of linear prediction 

8.4.1 Spectral analysis 

One of the most common application of linear prediction is generating smooth spectral repre­
sentations of short-time segments of speech. To the extent that the all-pole model of speech 
production is valid, these smooth spectra represent the frequency response of the filter in the 
speech production model, and are therefore suitable for estimating the formant frequencies, for 
example by determining local maxima in the linear-prediction spectrum. Tracking of formant 
frequencies throughout an utterance can be achieved by measuring linear-prediction spectra 
for successive frames. The spectral-analysis applications of linear prediction are not limited to 
speech, but are also advantageous for any signal whose spectrum shows sharp resonances. 

8.4.2 Analysis-synthesis systems 

Linear-prediction vocoders (Fig. (5) are based on the idea that the speech signal can be 
replaced by a model signal without affecting intelligibility. This model signal s′[n] is the response 
of the all-pole model filter Ĥ(f) to a synthetic source signal u′[n] which is either a periodic 
train of impulses for voiced speech or white noise for voiceless speech (Fig. 2b). Thus, the 
model signal is entirely specified by a small number of parameters: the predictor coefficients 
âk,>1 ≤ k>≤ p, the gain Ĝ, and, for voiced sounds, the frequency of the impulse train (which is 
the fundamental frequency). For a 20-ms segment of speech sampled at 10 kHz, this represents 
about 16 parameters, an order of magnitude less than the number of samples (200) in the raw 
signal. Because signal synthesis requires knowledge of the fundamental frequency of voice, the 
analysis stage of a linear-prediction vocoder must estimate the fundamental frequency (pitch) 
in addition to the linear-prediction parameters. This can be done for example by detecting 
local maxima in the short-time autocorrelation function of the signal. In practice, it is more 
convenient to estimate the pitch of the prediction error signal e[n] than that of the speech signal 
s[n] because the error signal usually shows one sharp peak for each pitch period (Fig. 5). Indeed, 
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the linear-prediction error signal is often used for pitch estimation even in applications that do
not involve signal synthesis from linear-prediction parameters.

Speech produced by standard linear-prediction vocoders as described above is intelligible, but
shows noticeable degradation compared to natural speech. High-quality linear prediction syn-
thesis is possible by using more realistic source signals than simple periodic pulse trains. In
multipulse LPC vocoders the source signal can contain multiple pulses in each pitch period.
The locations and amplitudes of these pulses are adjusted to find the best match between the
synthetic speech and the original speech. In code-excited LPC vocoders, the source signal is cho-
sen for each frame among a finite codebook of source waveforms. Optimization techniques are
used both in selecting the codebook and in selecting the source waveform from the codebook for
each frame. Both techniques provide synthetic speech essentially undistinguishable from natural
speech at the price of a moderate increase in bit rate over standard linear prediction.

8.5 Autoregressive spectral estimation

In Chapter 13, we introduce general techniques for estimating the power spectra of stationary
random signals. An important limitation of these methods is a trade-off between bias and
statistical stability. Estimates of the autocorrelation function need to be windowed in order
to obtain stable spectral estimates, On the other hand, short autocorrelation windows lead to
biases in spectral estimates, and in particular to underestimation of spectral peaks. As a result
of this trade-off, very long data records are needed to reliably estimate the power spectra of
signals with sharp spectral features.

Autoregressive spectral estimation is an alternative technique in which an all-pole model is fit
to the data sample. Because this technique is model-based, its limitations differ from those
the traditional techniques of Chapter 11. Autoregressive spectral estimation is particularly ad-
vantageous for signals that have sharp spectral peaks because it can reliably estimate these
peaks based on relatively short data records. Mathematically, autoregressive spectral estima-
tion (a.k.a. maximum-entropy spectral estimation) is equivalent to linear prediction, but the
emphasis is more on getting a reliable spectral estimate than on deconvolution of a source signal
from a filter. Historically, autoregressive spectral estimation was developed first by statisticians
(in the early 1900’s). Its relationship to linear prediction only became widely recognized in the
1970’s.

8.5.1 The Yule-Walker equations

In autoregressive spectral estimation, a stationary random signal x[n] is modelled as the output
of an all-pole (autoregressive) filter excited by white noise w[n]:

p

x[n] =
k

∑
ak x[n

=1

− k] + w[n] (8.28)
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The white noise is further assumed to be zero-mean, with variance σ2
w. The frequency response

of the all-pole filter is given by:

1
H(f) = (8

1 − p .29)
j

k=1 ak e− 2πfk

Therefore, according to the autoregressive mod

∑
el, the power spectrum of x[n] is given by:

Sx(f) = |H(f)|2 σ2

Sw(f) = w (8.
1 − p 2 30)

k=1 a e−j2πfk
k

To estimate the power spectrum Sx(f), it suffices

∣∣
to de

∑
termine the filter

∣∣
coefficients ak, 1 ≤

k ≤ p, and the variance σ2
w. This can be done by writing the autocorrelation function of x[n]:

Rx[k] =< x[n] x[n− k] >=<
( p∑

al x[n− l] + w[n]

)
x[n− k] > (8.31)

l=1

Applying the linearity and time-invariance properties of time averages, this becomes:

p

Rx[k] =
∑

al Rx[k l] + Rxw[k] for 0 k p (8.32)
l=1

− ≤ ≤

Any sample of the white noise w[n] is uncorrelated with its past values, and therefore with past
values of x[n], which are themselves weighted sums of past values of w[n]. Therefore,

Rxw[k] =
[
σ2

w if k = 0
(8.33)

0 if k > 0

Replacing Rxw[k] by its value in (8.32) for 0 ≤ k ≤ p gives a set of p+ 1 linear equations in the
p+ 1 unknowns ak, 1 ≤ k ≤ p, and σ2

w:
Rx[0] Rx[1] Rx[2] ... R ] 1 σ2

x[p w Rx[1] Rx[0] Rx[1] ... R x[p− 1]

 
−a1

 
0



Rx[2] R p− 2]


 x[1] Rx[0] ... Rx[

 
−a2


0

...


 ...


=

... ...


(8.34)

Rx[p] Rx[p− 1] Rx[p 2] ... Rx[0]

 
 

− a

  
− p


0



This system of linear equations is called the (stochastic) Yule-Walker equations. They are
equivalent to the deterministic form of the Yule-Walker equations (8.20) if the deterministic
autocorrelation function R̃s[k] is substituted for the true autocorrelation function Rx[k], and
the prediction error Ee for the variance of the white noise σ2

w. Therefore, they can also be
solved using the computationally-efficient Levinson-Durbin algorithm.

As argued above, the principal advantage of autoregressive spectral estimation over the con-
ventional spectral estimation techniques described above is that it can provide good frequency
resolution with short data records. One disadvantage of this technique is that it is relatively com-
putationally intensive. A further disadvantage is that results can be hard to interpret, partly
because the estimate depends appreciably on the exact manner in which the autocorrelation
function is estimated, partly because the model order p is usually not known a priori, and partly
because the autoregressive model does not apply equally well to all signals.
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8.5.2 Estimation of the autocorrelation function

In practice, the true autocorrelation function Rx[k] is rarely known, so that it has has to be
estimated from a finite data sample. When the Rx[k] are replaced by appropriate estimates in
the Yule-Walker equations (8.34), one obtains estimates for the filter coefficients âk, 1 ≤ k ≤ p
and the variance σ̂2

w. Substituting these estimates for their expected values in (8.30) gives the
autoregressive spectral estimate Ŝx(f).

Several alternative methods can be used for estimating the autocorrelation function for lags
0 ≤ k ≤ p from a data record of length N . The most straightforward method is to use the
unbiased estimate R̂x[k] introduced in Chapter 13:

1
R̂x[k] =

N−1

− |k|
∑

x[n] x[n
N

n=|k
− |k|] (8.35)

|

Use of unbiased autocorrelation estimates can lead to high-resolution spectral estimates because
no assumptions are made about the data outside of the available range. On the other hand,
for small data records, this estimate will occasionally yield an unstable filter transfer function,
and therefore an undefined spectral estimate Ŝx(f). It can be shown that use of the biased
autocorrelation estimate

R̂b N
x[k] =

− |k|
R̂x[k] .36)

N

guarantees the convergence of the autoregressive spectral estimate, at the price of some loss in
frequency resolution. The book by Marple (1987) describes variants of autoregressive spectral
estimation that provide both stability of the model filter and fine frequency resolution. The
book also describes efficient techniques for solving the Yule-Walker equations.

8.6 Summary

Linear prediction is a form of spectral analysis which fits an all-pole (autoregressive) model to
the data. This technique is well suited to speech signals because they are well approximated by
the response of an all-pole filter to either a white-noise source or a periodic impulse train. Unlike
spectral-analysis techniques based on the DFT, linear prediction can, in principle, separate the
contributions of the source and the filter to the speech signal.

The best-fitting all-pole model is found by minimizing the energy in the error signa, the difference
between the current signal sample and a linear predictor based on a small number of past signal
samples. Minimization of this energy yields a set of linear equations for the predictor coefficients.
In the frequency domain, this is equivalent to minimization of the integral over frequency of the
ratio of the signal spectrum to the spectrum of the all-pole model filter. Thus, linear-prediction
spectra provide a good fit to the envelope of the signal spectrum. Practically speaking, the key
property of linear prediction is that it provides a representation of speech signals in terms of a
small number of parameters that preserve essential information for intelligibility.
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8.7 Further reading

Rabiner and Schafer, Chapter 8, Sections 1, 2, 6.
Makhoul, Proc. IEEE 63, 561-580 (1975).
Marple, Digital spectral analysis with applications. Prentice-Hall (1987), Chapters 6-8.
Quatieri, Chapter 5; Chapter 12, Section 6.

8.8 Appendix: Proof of the Levinson-Durbin algorithm

Matrix notation helps in deriving the Levinson-Durbin algorithm given in Equations (8.22a-c).
We define â(i) as the column vector of coefficients on the left-hand side of (8.20) for a model of
order i

â(i) = [� 1 − ˆ(i)
a1 − â(i) ... − â(i) T

2 i ] , (8.A.1)

â(i)
r as this same vector in reverse order

â(i) �
r = [−ˆ(i) − ˆ(i) ... − â(i)

ai ai−1 1 1 ]T , (8.A.2)

and R(i) as the (i + 1) × (i + 1) Toeplitz correlation matrix on the left-hand side of (8.20). It
can be readily verified that

(i 1)[
â(i−1)

R
0

]
=


Ee

−
(i)  ...


(8.A.3a)

γi−1



R(i)
[

0
â(i−1)
r

]
=


γi−1 ... (8.A.3b)
(i

E
−1)


e

where γi


−1 is equal to

[ i−1

γi 1 =
�
R̃s[i] R̃s[i− 1] ... R̃s [2 ] R̃s [1 ]

]
â(i−1) = (

R̃s[i]− −
k

∑
â

i−1) ˜
k Rs[i k]

=1

−

Since both vectors on the right hand side of (8.A.3) have only two non-zero elements, we can
form a linear combination for which the last element equal to 0. Specifically, if we define

ki =
� γi−1

,
(i

E
−1)

e

we find that 
(i 1)

Ee
−

i

...


−

− ki


γ 1

...
(i−1)

E

 
(1− 2 (i 1)

ki )Ee
−

...


.


γ

 =
i−1

 
i

 
0


Therefore, if we have the solution â(i−1) and (i

E
−1)

e for model order i − 1, we can compute the
solution for model order i as

1
ki =

(
i−1

˜ ˆ i−1)
R ˜

s[i] −
∑ (

ak Rs[i− k]
)

(8.A.4a)
(i 1)

Ee
−

k=1
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ˆ −
a(i) =

[
a(i 1)

ˆ
0

]
− ki

[
0

â(i (8
r
−1)

]
.A.4b)

E(i)
e = (1− k2 (i 1)

i )Ee
− . (8.A.4c)

These equations are the same as (8.22a-c) written in matrix notation.



Figure 8.1: 
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Figure 8.2:
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Figure 8.3: (from Rabiner and Schafer) Signals and spectra involved in the autocorrelation 
method of lineaer prediction. a) Windowed speech signal. b) Prediction error signal. c) DFT 
spectrum and linear-prediction spectrum of the windowed signal. d) Spectrum of the prediction 
error signal. 
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Figure removed due to copyright restrictions.
Examples for speech samples, Fig. 8.7 and 8.9 in Rabiner and Schafer.



Figure 8.4: (from Rabiner and Schafer) a) Linear-prediction spectra of a vowel sampled at 6kHz>
for several values of the prediction order p. b) 28-th order linear-prediction spectrum and DFT 
spectrum of a speech sound sampled at 20kHz. 
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Figures removed due to copyright restrictions.
(a) Fig. 8.18 in Rabiner and Shafer.
(b) Fig. 8.17 in Rabiner and Shafer.
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