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Chapter 7 - TIME-DEPENDENT PROCESSING OF SIGNALS 
THE SHORT-TIME FOURIER TRANSFORM 
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Introduction 

In the preceding chapters, we have introduced methods for analyzing two broad classes of sig­
nals. The first class is that of finite-energy signals. Such signals rapidly decay to zero outside 
of a finite time interval, so that they have well-defined Fourier transforms. The second class of 
signals is that of stationary, random signals, which last indefinitely, and have stable statistical 
characteristics over long times. Examples of stationary signals are periodic signals and “white 
noise”, the output of a random number generator. Because such signals are of infinite dura­
tion, their Fourier transforms are, in general, not mathematically defined. However, they have 
a power spectrum obtained by Fourier transforming the autocorrelation function. Because the 
autocorrelation function is a time average, the power spectrum represents the average frequency 
content of the signal over all times. There is a third type of signals for which neither Fourier 
transforms nor power spectra are applicable. These nonstationary signals are of indefinite du­
ration, so that their Fourier transforms may not exist, and have statistical characteristics that 
change appreciably over time, so that it would not make sense to compute an average power 
spectrum for all times. For example, speech signals have spectral characteristics that change 
continuously over time. These variations are key for communication because a stationary sig­
nal cannot convey new information. Electrocardiographic signals also show temporal variations 
in statistical characteristics that reflect changes in the state of the heart. These changes are 
important in the clinic, for example in the diagnosis of arryhtmias. 

In this chapter, we introduce techniques for processing a special class of nonstationary signals. 
The basic idea is to divide the signal into short time segments or “frames” over which the 
signal is approximately stationary, then make a set of measurements for each frame. Such 
time-dependent processing is applicable whenever the signal is quasi-stationary, i.e. when its 
statistical characteristics change slowly relative to the frame length. For example, speech can 
be considered to be quasi-stationary because the motions of the the articulators are usually 
sufficiently slow that the spectral characteristics of speech change relatively little over intervals 
of 10 to 30 ms. 

The most important type of time-dependent processing is short-time Fourier analysis, which 
gives the energy distribution of a signal as a function of both time and frequency. Short-time 
Fourier analysis of speech signals is used for tracking important parameters such as the formant 
frequencies. It is also the basis for generating spectrographic displays and for vocoder systems 
that provide efficient storage and transmission of speech and audio signals. By varying the 
duration of the frames used for short-time Fourier analysis, frequency resolution can be traded 
for time resolution in the resulting energy distribution. 
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7.1 Time-dependent processing 

7.1.1 Definition 

A time-dependent measurement Tn on a signal x[n] is obtained by first applying a transformation 
T (.) (which is usually nonlinear) to the signal, and then lowpass filtering the transformed signal: 

∞ 

Tn = T ( x[m] )  w[n − m] =  T ( x[n] )  ∗ w[n]  (7.1) 
m=−∞ 

Figure 1a shows a block diagram representation of time-dependent processing. Time-dependent 
measurements depend not only on the transformation T (.), but also on the choice of the window 
function w[n]. This window function is the unit-sample response of the lowpass filter. In most 
applications, the window has a finite duration, so that the infinite sum in (7.1) is in fact a 
local weighted average of T ({x[m]}) centered at time n. The output Tn varies with time, but 
more slowly than does the signal x[n] because w[n] is a lowpass filter. Thus, it is usually not 
necessary to evaluate Tn for every time sample n: By the Nyquist theorem, it suffices to evaluate 
Tn at intervals of 1/2∆W samples, where ∆W is the cutoff frequency of the lowpass filter w[n]. 
Effectively, the bandwidth of the window defined the interval between frames used in short-time 
analysis. 

7.1.2 Short-time energy 

A useful example of (7.1) is obtained when the transformation T (.) is a square function: The 
output signal is then the short-time energy En of the signal x[n]: 

∞ 

En = x[m]2 w0[n − m]  (7.2) 
m=−∞ 

The window w0[n] must be positive in order to guarantee that the short-time energy be positive 
for all times. In the special case when w0[n] is a rectangular pulse of length 2N + 1 centered at 
the origin, this becomes 

n+N 

En = x[m]2 

m=n−N 

which corresponds to the intuitive notion of signal energy over the interval [n−N, n+N ]. Figure 
2 shows the short-time energy of a speech signal for Hamming windows of different lengths. Long 
windows provide a smooth short-time energy, while short windows are best for resolving fine 
temporal variations in signal energy. Sometimes one is interested in the short-time energy over 
a specific frequency band rather than that of the entire signal. In this case, the signal is first 
bandpass filtered, then the short-time energy of the filter output is computed. 

Direct application of the definition (7.2) gives one possible method for computing the short-time 
energy: The input signal is squared, then processed by a lowpass filter with unit-sample response 
w0[n] (Fig. 1b). This method is the best one when w0[n] is an IIR filter because the short-time 
energy can be evaluated recursively. On the other hand, if w0[n] is of finite duration, there exists 



Cite as: Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring
2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 

2



� � 

� � 

� 

� 

� � � 

� 

� � 

an alternative method for computing the short-time energy that is often more efficient. This 
alternative method can be derived by defining a new window w[n] = w0[−n], then making 
the change of variable l = m − n in (7.2): 

∞ ∞ 

En = x[m]2 w[m − n]2 = (x[n + l]w[l])2 (7.3) 
m=−∞ l=−∞ 

A block diagram representation of this method is shown in Fig. 1c. For each time n, this method 

amounts to computing the total energy in the windowed signal xn[m] = x[n + m] w[m]. This 
method is particularly efficient when the short-time energy needs only be computed for certain 
times, e.g. at multiples of 1/2W . 

7.1.3 Short-time autocorrelation function 

A generalization of the short-time energy is the short-time autocorrelation function Rn[k], which 
is a function of two variables, time n and lag k. It is obtained by premultiplying the portion 

of the signal centered at time n by a window function, forming xn[m] = x[n + m] w[m], then 
computing the deterministic (a.k.a. “raw”) autocorrelation function of the windowed signal 
xn[m] (Fig. 1e): 

∞ ∞ 

Rn[k] = xn[k] ∗ xn[−k] =  xn[m] xn[m−k] =  x[n+m] w[m] x[n+m−k] w[m−k] 
m=−∞ m=−∞ 

(7.4) 
For example, if w[n] is a rectangular pulse of length 2N + 1 centered at the origin, one has: 

N 

Rn[k] =  x[n + m] x[n + m − |k|] 
m=−(N−|k|) 

Note that the summation is over 2N − |k| + 1 terms, so that the short-time autocorrelation 
function is zero for |k| > 2N . This is true for all windows of length 2N + 1.  

Comparing (7.4) with (7.3) shows that Rn[0] = En if  the same window  w[n] is used in both  
expressions. In fact, because Rn[k] is the deterministic autocorrelation function of the windowed 
signal xn[m], it has all the properties of autocorrelation functions: 

Rn[k] =  Rn[−k] 

|Rn[k]| ≤  Rn[0] = En 

If the signal is periodic over the duration of the window, the short-time autocorrelation function 
has local maxima when the lag k is a multiple of the period. Thus, the short-time autocorrelation 
function is useful for tracking the period of quasi-periodic signals (such as voiced speech) whose 
period slowly changes over time (Fig. 3). 

The short-time autocorrelation function can be written in the form of time-dependent processing 
(7.1) if we define a new filter wk[n] analogous to w0[n] in (7.2). For this purpose, we make the 
change of variable l = n + m in (7.4): 

∞ ∞ 

Rn[k] =  x[n+m] x[n+m−k] w[m] w[m−k] =  x[l] x[l−k] [w[l − n] w[l − n − k]] 
m=−∞ l=−∞ 
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If, for each lag k, we introduce the new window function 

wk[n] = w[−n] w[−k − n]  (7.5a) 

the short-time autocorrelation function becomes 
∞ 

Rn[k] =  (x[l] x[l − k]) wk[n − l] = (x[n] x[n − k]) ∗ w[n]  (7.5b) 
l=−∞ 

This expression is in the form (7.1), with the transformation T (.) being multiplication of the 
signal x[n] by the delayed signal x[n − k]. This alternative interpretation of the short-time 
autocorrelation function is illustrated in Fig. 1d. Note that the new window wk[n] is different 
for each lag, and that its length is N − |k| if w[n] is of  length  N . 

There are many other forms of time-dependent processing besides the short-time energy and the 
short-time autocorrelation function. In fact, any time-average operation on stationary signals 
can be extended to a form of time-dependent processing for nonstationary signals by substituting 
a lowpass filter for the infinite time average. The most important form of time-dependent 
processing is the short-time Fourier transform, which can be seen as a generalization of the 
power spectrum to nonstationary signals. 

7.2 The short-time Fourier transform 

7.2.1 Definition 

The short-time Fourier transform Xn(f) is function of two variables, time n and frequency f , 
which describes how the spectrum of restricted segments of a signal x[n] evolves with time. 
Formally, it is defined by: 

∞ � −j2πfm Xn(f) = x[m] w[n − m] e (7.6) 
m=−∞ 

While this definition may appear somewhat daunting, it can be interpreted from at least three 
different points of view (Fig. 4): a time-dependent processing interpretation, a Fourier transform 
interpretation, and a filter-bank interpretation. Each of these interpretations provides different 
insights into the properties of short-time Fourier analysis, and leads to alternative implementa­
tions that can be particularly efficient in certain applications. 

7.2.2 Time-dependent processing interpretation 

The short-time Fourier transform (STFT) is a form of time-dependent processing (7.1) in which 
the transformation T (.) is multiplication of the signal by a complex exponential. To show this, we 
start from the definition (7.6), and hold the frequency f at a specific value f0. When considered 
as a function of n, Xn(f0) can be written in the form of a convolution: 

Xn(f0) =  x[n] e −j2πf0n ∗ w[n]  (7.7) 
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This represents the cascade of a modulation (multiplication) by the complex exponential e −j2πf0n 

and lowpass filtering by the window w [n ] (Fig. 7.4a). From the product theorem, modulation 
translates the signal spectrum X (f ) (assumed to exist) by − f 0, bringing the frequency compo­
nents near f 0 down to DC: 

x [n ]e −j2πf0n ←→ X (f + f 0) =  X (f )©∗ δ̃(f + f 0) 

The convolution of the modulated signal by the lowpass window w [n ] then retains these frequency 
components in the output, and rejects all other components. From these observations, we deduce 
two key properties of X n(f 0) considered as function of time n : 

1.	 It is a lowpass signal, in the sense that it varies with n much slower than does 
the original signal x [n ]. The bandwidth of X n(f 0) is the same as that of w [n ]. 

2.	 It contains the frequency components of x [n ] that  are  within  ± ∆W of f 0, where  
∆W is the bandwidth of w [n ]. 

The time-dependent processing interpretation of the STFT is important because it places the 
STFT within the general framework of this chapter. However, unlike the other two interpreta­
tions, it is rarely used as a basis for implementations of the STFT. 

7.2.3 Fourier transform interpretation 

The Fourier transform interpretation of the STFT is the basis for modern implementations of 
the STFT. It is most easily understood by considering X n(f ) as a function of frequency for a 
specific time n = n 0. From the definition (7.6), it is clear that X n0 (f ) is the discrete-time 
Fourier transform of the windowed signal x n0 [m ] =  x [m ] w [n 0 − m ], as shown in Fig. 7.4b. 
Therefore, by the product theorem, the STFT is the cyclic convolution of the transform of the 
signal x [m ] (assumed to exist) by the transform of w [n 0 − m ], which is W (− f ) e −j2πfn0 : 

x n0 [m ] =  x [m ] w [n 0 − m ] ←→ X n0 (f ) =  X (f )©∗ W (− f ) e −j2πfn0 (7. 8) 

These operations are shown in Fig. 5 and 6 for a periodic speech-like signal, using Hamming 
windows of 10 ms and 40 ms respectively. The effect of the window is to “smear” the signal 
spectrum X (f ), so that the frequency resolution of the STFT is limited by the bandwidth of the 
window ∆W . Specifically, the longer the window, the smaller its bandwidth, and the finer the 
frequency resolution. In the examples of Fig. 5 and 6, the harmonics of the 100 Hz fundamental 
frequency are resolved with the 40-ms window, but not with the 10-ms window. Figure 7 shows 
similar results for an actual speech utterance analyzed with Hamming windows of 5 ms and 50 
ms. 

The Fourier transform interpretation of the STFT is useful for showing that the signal x [n ] 
can be exactly reconstructed from its STFT. Because X n(f ) is the Fourier transform of the 
windowed signal x [m ] w [n − m ], the inverse DTFT formula gives 

� 1 
2 

x [m ] w [n − m ] =  X n(f ) e j2πfm df 
− 1 

2 
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Evaluating this expression for m = n yields an exact reconstruction formula for time n (as­
suming that w [0] � = 0): 


1 
� 

2
1


x [n ] =  X n(f )e j2πfndf (7. 9) 
w [0] − 1 

2 

This reconstruction formula is not directly useful in practice because it involves an integral over 
frequency. However, we show in the Appendix that this integral can be replaced by a finite sum 
(an inverse DFT) under mild conditions on the window w [n ]. 

As a final remark, because the short-time autocorrelation function R n[k ] is the deterministic 
autocorrelation function of the windowed signal x n[k ], and the STFT is the DTFT of the same 
windowed signal, the Fourier transform of R n[k ] is the magnitude square of X n(f ): 

R n[k ] =  x n[k ] ∗ x n[− k ] ←→ | X n(f )| 2 = X n(f ) X n(− f )  (7. 10a ) 

Applying the inverse DTFT formula to (7.10a) gives: 

� 1 

R n[k ] =  
2 | X n(f )| 2 e j2πfk df (7. 10b ) 

− 1 
2 

Thus, the magnitude of the STFT (which is often displayed in the form of a spectrogram) 
contains the same information as the short-time autocorrelation function. Evaluating (7.10b) 
for k = 0 yields Parseval’s theorem for the STFT 

� 1 

E n = R n[0] = 
2 | X n(f )| 2 df (7. 10c ) 

− 1 
2 

which simply states that the energy of the windowed signal is conserved in the frequency domain. 

7.2.4 Filter-bank interpretation 

Historically, the filter-bank interpretation of the STFT was the basis for the first implementations 
of the STFT in the 1940’s. It still plays an important role in modern practice because it is the 
only practical implementation when the STFT is to be evaluated for arbitrary frequency samples. 
This interpretation is best understood by holding the frequency f at f 0, and considering X n(f 0) 
as a function of time n . To derive the filter-bank formula, we first make the change of variable 
l = n − m in (7.6): 

∞ ∞ 

X n(f 0) =  x [n − l ] w [l ] e −j2πf0(n−l) = e −j2πf0n x [n − l ] w [l ] e j2πf0l (7. 11) 
l=−∞ l=−∞ 

It is useful to introduce the modified short-time Fourier transform: 

X̃n(f 0) = X n(f 0) e j2πf0n = x [n ] ∗ w [n ] e j2πf0n (7. 12) 

Clearly, the STFT and the modified STFT provide the same information, differing only by the 
j2πf0nmultiplicative factor e . In fact, both have the same magnitude: | X̃n(f 0)| = | X n(f 0)| . 

From (7.12), it is apparent that the modified STFT is the convolution of the signal x [n ] by  the  
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� modulated window wf0 [n] = w[n] ej2πf0n: From the product theorem, modulating the window 
has the effect of translating its transform W (f) up by  f0: 

wf0 [n] =  w[n] ej2πf0n ←→ W (f − f0) =  W (f) c ∗ δ̃(f − f0) 

Because the window w[n] has a lowpass spectrum, the transform of the modulated window 
W (f − f0) has significant energy only in the vicinity of f = f0, which means that convolution 
by the modulated window is a bandpass filtering operation around the center frequency f0. 
Figure 8 shows how the DTFT of X̃n(f0) (considered as a function of n) is the product of 
X(f) (assumed to exist) with the transform of the modulated window W (f − f0). From these 
observations, we deduce two properties of the modified STFT X̃n(f0): 

1.	 It is a bandpass signal centered at f = f0. 

2.	 It consists of the components of the signal x[n] that are  within  ± ∆W of f0. 

From (7.12), the STFT Xn(f0) can be obtained from the modified STFT X̃n(f0) by demodula­
tion: 

Xn(f0) =  X̃n(f0) e −j2πf0n 

This has the effect of translating the components near f0 down to DC, thereby creating the 
lowpass signal Xn(f0). The effect of this demodulation on the DTFT of Xn(f0) is  shown  in  
Fig. 8. The implementation of the STFT as a cascade of a bandpass filtering operation and 
a demodulation is shown in Fig. 4c. In order to evaluate the modified STFT for a set of N 
discrete frequencies fk, 0  ≤ k ≤ N − 1, the signal x[n] is passed through a bank of N bandpass 
filters with center frequencies fk. 

The filter-bank interpretation is useful for determining the time resolution of the STFT. Specif­
ically, the modified STFT X̃n(f0) is the convolution of the signal x[n] by the modulated window 
wf0 [n]. This bandpass filter will resolve a pair of pulses in the input providing that its duration 
(which is the same as that of the original window w[n]) is shorter than the separation between 
the pulses. Thus, the STFT has a time resolution determined by the duration of the window, and 
a frequency resolution determined by the bandwidth of the window. The uncertainty principle 
implies that fine time resolution and fine frequency resolution cannot be achieved simultaneously 
in short-time Fourier analysis. 

7.2.5 Efficient implementation of the STFT using the FFT 

In practice, the short-time Fourier transform can only be evaluated for a finite number of fre­
quencies. FFT algorithms provide efficient implementations of the STFT when the frequency 
samples fk are of the form k/N , where  N is a power of two. Specifically, the implementation 
would be as follows: 

1.	 Multiply the portion of the signal centered at time n by the window. 

2.	 Zero-pad the windowed signal to length N , and compute the N -point DFT of 
the windowed signal using an FFT algorithm. This gives Xn(k/N) for  0  ≤ 
k ≤ N − 1. 
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3.	 Move the window by R samples, where R is  a factor  to be  determined,  and  
iterate until the end of the signal. 

The only unspecified parameter of this method is the sampling interval R, i.e. how frequently the 
STFT is evaluated in time. We have seen that the STFT is a lowpass signal whose bandwidth 
is determined by that of the window w[n]. According to the Nyquist theorem, if the bandwidth 
of the window is ∆W , the STFT must be sampled at intervals of R = 1/(2∆W ) to  avoid  
aliasing. By the uncertainty principle, the bandwidth of the window is inversely related to its 
duration. For example, the bandwidth of a Hamming window of length N is 2/N . Thus,  the  
STFT computed with an N -point Hamming window needs only be evaluated at intervals of 
R = N/4. Because the Fourier transform of a signal of length N can be reconstructed from N 
frequency samples, the number of time and frequency samples that are necessary to represent 
the STFT is only 4 times greater than the number of samples in the signal x[n]. In fact, for real 
signals the number of STFT samples needs only be twice the number of signal samples because 
of the conjugate symmetry of Fourier transforms. In many applications, this slight redundancy 
of the STFT is more than offset by increased flexibility in processing. Furthermore, it is often 
possible to sample the STFT at a much lower rate than 4/N , while preserving essential features 
of the signal (such as speech intelligibility). This observation is the basis for vocoders, systems 
for the efficient transmission of speech. 

Because the FFT gives equally-spaced frequency samples, this implementation is most useful 
when all the filters in STFT the filter bank have the same bandwidth. In some cases, unequal 
bandwidths are desirable in short-time Fourier analysis. For example when modeling cochlear 
processing, filter bandwidths are approximately a constant fraction of their center frequencies. 
Because filter bandwidths are inversely proportional to the duration of the impulse response, this 
implies that window lengths should be inversely proportional to filter center frequencies. Such 
proportional scaling can be efficiently achieved using the Wavelet transform. This transform 
gives good frequency resolution at low frequencies, and good time resolution at high frequencies. 

7.3 Applications of the short-time Fourier transform 

7.3.1 Spectrographic displays 

A spectrogram is a display of the magnitude of the short-time Fourier transform of a signal as 
a function of both time and frequency. For sound signals, restriction to the magnitude of the 
STFT is usually justified because the ear is not very sensitive to the phase of the short-time 
spectrum (This is known as Ohm’s acoustic law). Spectrograms can be displayed either by 
encoding energy on a gray scale, or as perspective (”waterfall”) representations. Gray-scale 
displays are particularly convenient, and were produced by analog spectrographic instruments 
in the 1940’s, long before digital spectrograms became available. Analog spectrograms were 
generated by passing the signal through a bank of analog bandpass filters, then computing the 
short-time energy at the output of each filter by rectifying and lowpass filtering the bandpass 
filter outputs (bandpass filter interpretation of the STFT). Modern, digital spectrograms are 
obtained by computing fast Fourier transforms of successive signal segments as described above 
(Fourier transform interpretation of the STFT). 
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Two bandwidths are widely used in spectrographic analyses of speech: Broadband spectrograms, 
which have a frequency resolution of 300 Hz, and narrowband spectrograms which have a reso­
lution of 50 Hz. Broadband and narrowband spectrograms of an utterance produced by a male 
speaker are shown in Fig. 9. The frequency resolution of the narrowband spectrogram is suf­
ficient to resolve individual harmonics of the fundamental frequency of voice (˜100 Hz). These 
harmonics appear as horizontal bands during voiced portions of speech. On the other hand, the 
broadband spectrogram has sufficient time resolution to resolve individual opening and closing 
of the vocal cords, which appear as vertical striations during voiced segments. Thus, the peri­
odic vibration of the vocal cords appears as vertical striations in broadband spectrograms, and 
as horizontal bands in narrowband spectrograms. The broadband spectrogram also reveals the 
short noise bursts of stop consonants and rapid changes in formant frequencies. 

7.3.2 Time-dependent filtering 

The STFT is useful not only for analyzing nonstationary signals, but also for carrying out time-
varying modifications of signals. For example, to implement a time-dependent filter, the STFT 
of the input signal x[n] is multiplied by a time-dependent frequency response Hn(f), then the 
inverse STFT of the product Xn(f) Hn(f) is computed. Other applications of the STFT are to 
translate or scale the signal spectrum, and to speed up or slow down signals without changing 
their frequency content. Just as speeding up a tape recorder by a factor K scales up the frequency 
axis by a factor of K, playing back a sampled signal at a different sampling frequency also scales 
its spectrum. Appropriate use of the STFT can compensate for this spectral scaling. In these 
applications, it is necessary to synthesize a signal from the STFT, i.e. to have an inverse STFT 
algorithm. Such an algorithm is described in the Appendix. 

7.3.3 Analysis-synthesis systems 

An analysis-synthesis system (or ”vocoder”) is a device for efficient transmission or storage of 
speech or audio signals. A measure of efficiency is the bit rate, i.e. the number of bits per second 
that are required to represent the signal. For example, a high-quality audio signal is typically 
sampled at 48 kHz and quantized at 16 bits, requiring a rate of 1.5 M bits/s for a two-channel 
(stereo) signal. A telephone-quality speech signal sampled at 8 kHz with 10-bit quantization 
requires a rate of 80,000 bits/s. Vocoders allow the bit rate to be considerably decreased (to as 
little as 1200 - 9600 bits/s) with little degradation in speech intelligibility. A vocoder consists of 
three stages: an analysis stage which extracts information-bearing parameters from the signal 
and encodes them for transmission or storage, an optional transmission channel or storage 
medium, and a synthesis stage which decodes the transmitted parameters and generates a signal 
from these parameters. 

The STFT is the basis for the channel vocoder, which was developed by Homer Dudley at Bell 
Laboratories in the 1930’s, and is still a widely used analysis-synthesis system, particularly in 
applications with high background noise. The channel vocoder is based on the source-filter 
model of speech production. This model states that speech can be reconstructed from two 
sets of signals, one representing a source and one representing the filtering properties of the 
vocal organs. The source can be either a voicing source representing periodic vibration of the 
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vocal cords, or a  noise source representing turbulence generated in the vocal tract. In a channel 
vocoder (Fig. 10), the analysis stage extracts filter information from the magnitude of the STFT 
evaluated at a small number of frequency channels (typically 10-20). Again, phase information 
can be discarded because the ear is not particularly sensitive to phase. Source information 
is obtained by a pitch/voicing detector, which determines if each frame is voiced, and, if so, 
what is the fundamental frequency of the vocal cords (which is heard as pitch). After analysis, 
voicing and pitch information are be transmitted together with the STFT magnitude for each 
frequency channel. At the synthesis stage, a speech signal is reconstructed by exciting the filters 
by a source signal whose amplitude for each channel is modulated by the transmitted STFT 
magnitude. Either of two source signals is used: a periodic train of pulses for voiced segments, 
and broadband noise during unvoiced segments. The frequency of the pulse train is determined 
by the detected pitch. In practice, 10-20 frequency channels, each sampled at intervals of 10 ms 
suffice to produce intelligible speech. If the energy in each channel is encoded with 6 bits, this 
gives a rate of 9000 bits/sec, roughly a factor of 10 decrease over pulse-code modulation. 

In recent years, another type of analysis-synthesis system based on the STFT has been used in 
high-quality digital processing of sound signals, particularly music. Unlike the channel vocoder, 
these new systems require transmission of both the magnitude and phase of the STFT. These 
systems make use of knowledge of masking properties of the human ear to reduce the bit rate 
necessary to encode the STFT. For example, if at a particular time, the sound signal contains 
both a loud frequency component and a weak component, the weak component will be masked 
(i.e. not heard) if it is sufficiently close in frequency to the loud component. Under such 
conditions, there would be no loss in quality if the weak component were removed (i.e. not 
transmitted) in the analysis-synthesis system. Using these ideas, compact-disk quality encoding 
of stereo sound has been demonstrated with bit rates of 384 kB/sec, about 1/4 of the rate used 
in CD players. 

7.4 Summary 

Time-dependent signal processing consists in making certain measurements for successive short-
time segments of frasmes of a nonstationary signal. It is a useful technique for signals whose 
statistical characteristics change slowly relative to the durations of the analysis frames. Virtually 
any form of processing that is applicable to stationary signals can also be carried out for short 
time segments of nonstationary signals: Examples include the short-time energy, the short-time 
autocorrelation function, and the short-time Fourier transform. 

Short-time Fourier analysis is used for representing the energy distribution of nonstationary 
signals as a function of both time and frequency. The short-time Fourier transform can be im­
plemented either by computing the Fourier transforms of successive, windowed signal segments, 
or by passing the signal through a bank of bandpass filters. The time resolution of this analysis 
is determined by the duration of the window, while the frequency resolution is determined by 
the passband of the bandpass filters, which is equal to the bandwidth of the window. Because 
the uncertainty principle places a lower bound on the duration-bandwidth product of any signal, 
it is not possible to simultaneously achieve fine time resolution and fine frequency resolution in 
short-time Fourier analysis. 
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7.5	 Further reading 

Rabiner and Schafer, Chapter 4, Sections 1, 2, 6; Chapter 6, Sections 1, 4 
Quatieri, Chapter 3, Section 3; Chapter 7, Sections 1-4 

7.6	 Appendix: Signal reconstruction from the short-time Fourier 
transform 

Equation (7.9) shows that exact signal reconstruction from the STFT is theoretically possible. 
However, this formula is not practically useful because it requires knowing the STFT for all 
frequencies. We will show that exact reconstruction is possible when a finite number of fre­
quency samples of the STFT are available, providing that the analysis window verifies a simple 
condition. To be specific, assume that the STFT Xn(f) is available for N frequency samples 
fk = k/N, 0 ≤ k ≤ N − 1, and for all n. We propose to reconstruct the signal by 
approximating the integral (7.9) by a sum over the frequency samples: 

� 1 N−1 
j2πfkn 1 N−1 

˜x̂[n] = Xn(fk) e = Xn(fk)  (7.A.1)
N w[0]	 N w[0]

k=0	 k=0 

This filter-bank summation method of synthesis is illustrated in Fig. A.1. The figure shows that 
the reconstructed signal x̂[n] can be considered as the response of a parallel combination of N 
bandpass filters wfk [n] to the signal x[n]. Therefore, the reconstructed signal will be exactly 
equal to the original signal if and only if the frequency response of the parallel combination of 
filters is 1 for all frequencies: 

1 N−1 

Wfk (f) = 1 	 (7.A.2)
N w[0] 

k=0 

We have seen that the DTFT of wfk [n] =  w[n] ej2πfkn is W (f − fk). Thus, replacing fk by its 
value k/N , the condition for exact reconstruction becomes: 

1 N−1 

W (f − k/N) = 1 	 (7.A.3)
N w[0] 

k=0 

For example, Figure A.2a shows that this condition is verified if W (f) is an ideal lowpass filter 
with cutoff frequency 1/2N . 

While the ideal lowpass window is of theoretical interest, it cannot be realized by a finite digital 
filter. More practical windows can be found by writing the condition for exact reconstruction 
(7.A.3) in the time domain. For this purpose, we note that W (f − k/N) is equal to the cyclic 
convolution W (f) ∗ δ(f − k/N). Reporting this expression into (7.A.3), and making use of the ©˜
distributivity of convolution with respect to addition yields: 

1 N−1	 1 N−1 
˜W (f)©∗ δ̃(f − k/N) =  W (f)©∗ δ(f − k/N) = 1  

N w[0]	 N w[0]
k=0	 k=0 
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Using the product theorem and the Fourier transform pair for periodic impulse trains, we obtain:


w[n] 
∞ 

δ(n − rN) ←→ 1/N W (f)©∗
∞ 

δ(f − k/N) =  
N w

1 
[0] 

W (f)©∗
N−1 

δ̃(f − k/N) 
r=−∞ l=−∞ k=0 

Noting that the inverse DTFT of 1 is δ[n], we obtain the condition for exact reconstruction in 
the time domain:  ∞ 

w[rN ] δ[n − rN ] =  w[0] δ[n]  (7.A.4) 
r=−∞ 

This condition simply requires that w[n] be zero for all times n that are non-zero multiples of 
the number of frequency samples N . Figure A.2 shows examples of windows that verify this 
condition. Note that, to verify (7.A.4), it suffices that the duration of w[n] be less than  N , but 
that this condition is by no means necessary. 
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Figure 7.1: Block-diagram representation of various types of short-time processing. A. General 
time-dependent measurement. B. Low-pass filter implementation of the short-time energy. C. 
Window implemetation of the short-time energy. D. Low-pass filter implementation of the short-
time autocorrelation function. E. Window implementation of the short-time autocorrelation 
function. 
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Figure 7.2:    Short-time energy functions of a speech signal for Ham­ming windows of 5, 10, 20 and 40 ms. 
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Figure 7.3:   Short-time autocorrelation functions for (a) and (b) voiced speech, and (c) unvoiced
 speech using 40-ms Hamming windows. 
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Figure 7.4: A. Time-dependent processing interpretation of the STFT. B. Fourier transform 
interpretation of the STFT. C. Bandpass filtering interpretation of the STFT. 
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Figure 7.5: Fourier transform interpretation of the STFT - 10 msec window.
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Figure 7.6: Fourier transform interpretation of the STFT - 40 msec window.


 
Cite as: Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring
2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 

18



Figure 7.7:  Waveforms and short-time spectra of vowels obtained with 5-ms (top) and 50-ms
 (bottom) Hamming windows. 
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Figure by MIT OpenCourseWare. After Rabiner and Schafer.
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Figure 7.8:     Block diagram of a channel vocoder. Top: analysis stage. 
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Figure 7.9: Bandpass filter interpretation of the STFT - f0 = 1.5kHz. 
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Image removed due to copyright restrictions.

Please see: Figure 10.18 in Oppenheim and Schafer. Discrete-Time Signal Processing. 1st ed. Upper Saddle River: Prentice-Hall, 1975.




Figure 7.11:  Signal analysis and synthesis be the filter bank sum­mation method. 
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Figure 7.12:  A. Composite frequency response of the filter bank summation method of
 signal synthesis for N = 6 ideal filters. B. Typical windows that verify the exact 

reconstruction condition in the filter bank summation method of signal synthesis. 
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