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Introduction

The Fourier representation of signals that we studied in Chapter 3 is important for understand-
ing how filters work and what a spectrum is, but it is not a practical tool because the DTFT
is a continuous function of frequency and therefore its computation would in general require an
infinite number of operations. The purpose of this chapter is to introduce another representation
of discrete-time signals, the discrete Fourier transform (DFT), which is closely related to the
discrete-time Fourier transform, and can be implemented either in digital hardware or in soft-
ware. The DFT is of great importance as an efficient method for computing the discrete-time
convolution of two signals, as a tool for filter design, and for measuring spectra of discrete-time
signals. While computing the DFT of a signal is generally easy (requiring no more than the
execution of a simple program) the interpretation of these computations can be difficult because
the DFT only provides a complete representation of finite-duration signals.

4.1 Definition of the discrete Fourier transform

4.1.1 Sampling the Fourier transform

It is not in general possible to compute the discrete-time Fourier transform of a signal because
this would require an infinite number of operations. However, it is always possible to compute a
finite number of frequency samples of the DTFT in the hope that, if the spacing between samples
is sufficiently small, this will provide a good representation of the spectrum. Simple results are
obtained by sampling in frequency at regular intervals. We therefore define the N -point discrete
Fourier transform X[k] of a signal x[n] as samples of its transform X(f) taken at intervals of
1/N :

∞
X[k] =� X(k/N) =

∑
x[n]e−j2πkn/N for 0 k N 1 (4.1)

n=

≤ ≤ −
−∞

Because X(f) is periodic with period 1, X[k] is periodic with period N , which justifies only
considering the values of X[k] over the interval [0, N − 1].

4.1.2 Condition for signal reconstruction from the DFT

An important question is whether the DFT provides a complete representation of the signal,
that is, if the signal can be reconstituted from its DFT. From what we know about sampling,
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we expect that this will only be possible under certain conditions. Specifically, we have seen
in Chapter 1 that, if we take N samples per period of a continuous-time signal with period
T , then the signal can be exactly reconstructed provided that N > 2 WT , where W is the
largest frequency component in the signal. Similarly, if we take N samples per period of the
continuous-frequency, periodic signal X(f) with period 1, we expect that the spectrum can be
reconstructed if N is greater than the duration of the time signal x[n]. The sampling operation
is equivalent to a multiplication by a train of impulses (Fig. 4.1), which is covered in more detail
in Chapter 5. Therefore, sampling at intervals of 1/N effectively forms the new spectrum

∞ ∞ ∞
X̃(f) =� X(f)

∑
δ(f − k/N) =

∑
X(k/N)δ(f k/N) = X[k]δ(f k/N) (4.2)

k= k=

−
k=

∑
−

−∞ −∞ −∞

Remembering from (3.12m) that

∞ ∞
N

r=

∑
δ[n − rN ] ←→

−∞ k=

∑
δ(f − k/N)

−∞

and applying the convolution theorem shows that the inverse DTFT x̃[n] of the sampled spectrum
X̃(f) is the convolution of the original signal x[n] by a periodic train of unit samples:

∞ ∞
x̃[n] = x[n] ∗N

∑
δ[n rN ] = N x[n rN ] (4.3)

r=

−
−∞ r=

∑
−

−∞

The relation between x[n] and x̃[n] is shown in Fig. 4.1. The signal x̃[n] is periodic with period
N . It is said to be a time-aliased version of x[n] by analogy with the frequency-aliasing formula
(1.30). In the important special case when the duration of x[n] is smaller than N , specifically,
if x[n] is zero outside of the interval [0, N − 1], one has:

x̃[n] = Nx[n] for 0 ≤ n ≤ N − 1 (4.4)

Only in this special case can the signal be exactly reconstructed from its DFT. Such reconstruc-
tion can be accomplished by multiplying with a rectangular window in time, which corresponds
to convolving in frequency with the interpolation function illustrated in Figure 4.2.

4.1.3 Inverse discrete Fourier transform

So far, we have proven that the finite-duration signal x[n] can in principle be reconstructed from
its DFT X[k], but we have not given an explicit formula for achieving this reconstruction. We
will show by two different methods that the desired inverse DFT formula is:

1
x[n] =

N−1

X[k] ej2πkn/N (4.5a)
N

k

∑
=0

A first method for deriving this formula is to combine (4.4) with the definition of X̃(f) in (4.2):

∞
X̃(f) = X

k=

∑
[k] δ(f − k/N)

−∞
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Taking the inverse DTFT, one obtains:

1
x[n] =

1
x̃[n] =

N

1

N

∫
X̃(f) ej2πfn 1

df =
0

∞∑
X[k] δ

k=−∞

∫ 1

(f
N 0

− k/N) ej2πfn df

where we have interchanged the orders of summation and integration to obtain the rightmost
expression1. We note that∫ 1 j2πkn/N

δ(f − k/N)ej2πfn e
df =

0

{
if 0 ≤ k ≤ N − 1

0 otherwise

because k/N is outside of the range of integration [0, 1[ when k is outside of the interval [0, N−1].
Therefore the inverse DFT formula is

1
x[n] =

N−1∑
X[k] ej2πkn/N (4.5a)

N
k=0

Because the signal x[n] is of finite duration, the definition of the DFT (4.1) becomes:

N−1

X[k] =
∑

x[n] e−j2πkn/N (4.5b)
n=0

Formulas (4.5a) and (4.5b) constitute the DFT pair for finite-duration signals. Note the sym-
metry between (4.5a) and (4.5b), the only differences being the signs of the arguments of the
complex exponentials and the 1/N factor in the inverse DFT formula (4.5a).

The DFT pair (4.5) can also be considered as a purely algebraic relation between the N numbers
x[n], 0 ≤ n ≤ N − 1 and the N numbers X[k], 0 ≤ k ≤ N − 1, with the two sets of numbers
being related by a set of N linear equations. This point of view leads to an alternate proof of
the inversion formula (4.5a). Specifically, assume that the X[k] are defined from the x[n] by
(4.5b), and form the sum

N−1 N
j2πkm/N

−1 N−1

y[m] ==� X[k]e =
k

∑
=0 k

∑
x

=0 n

∑
[n]ej2πk(m−n)/N

=0

Interchanging the order of summations produces

N−1 N−1

y[m] =
∑

x[n]
n=0 k

∑
ej2πk(m−n)/N

=0

Using the result that discrete complex exponentials with period N are orthogonal over the
interval [0, N − 1]:

N−1∑
ej2πk(m−n)/N f N

=

{
N if m− n is a multiple o
0 otherwise

k=0

we obtain
N−1

y[m] =
k

∑
X[k] ej2πkm/N = N x[m]

=0

1Although the range of integration [0, 1[ differs from the usual range [− 1 , 1
2

[ for inverse DTFTs, the two are
2

equivalent because Fourier transforms are periodic.
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which proves the inverse DFT formula (4.5a). This proof emphasizes that the DFT operation can
be considered as a change of basis set (specifically a rotation) in an N -dimensional vector space.
In the time domain, the signal is decomposed into a sum of orthogonal unit samples δ[n − k],
while in the inverse DFT formula, the orthogonal basis vectors are the complex exponentials
ej2πkn/N .

4.1.4 Relation to discrete Fourier series

We have shown that taking N samples of the DTFT X(f) of a signal x[n] is equivalent to
forming a periodic signal x̃[n] which is derived from x[n] by time aliasing. If the duration of x[n]
is smaller than N , one period of x̃[n] is identical to x[n] within a factor of N . These results are
the dual of those obtained in Section 1.3 for the sampling of periodic, continuous time signals.
We showed that taking N samples per period of the periodic signal x(t) results in frequency
aliasing of the Fourier series coefficients Xk. If the bandwidth of x(t) is less than N/2T , the
Fourier series coefficients of the discrete-time signal coincide with those of the original signal
x(t). Thus, there is a duality between sampling in frequency the DTFT of a discrete-time signal
to form the DFT, and sampling in time a periodic signal to form the discrete Fourier series. In
both cases, sampling produces signals that are discrete and periodic in both the time and the
frequency domain. Therefore, the discrete Fourier transform and the discrete Fourier series are
the same mathematical operation (within a factor of N).

This result is to be expected because there is a one-to-one correspondence between discrete
time signals of duration N and discrete, periodic signals with period N . Specifically, given a
finite-duration signal x[n], we can always generate a periodic signal x̃N [n] by repeating x[n]
indefinitely at intervals of N samples:

∞ ∞
x̃N [n] =

� ∑
x[n+ rN ] = x[n] ∗ δ[n rN ] .6a)

r=−∞ r=

∑
−

−∞

Conversely, given a periodic signal x̃N [n], we can form a finite-duration signal x[n] by multipli-
cation with a rectangular pulse of length N :

x̃ [n] if 0 n N 1
x[n] = ˜ NxN [n]RN [n] =

{ ≤ ≤ −
(4.6b)

0 otherwise

The Fourier series coefficients X̃k of the periodic signal are related to the DFT of the finite-
duration signal by the formula:

1
X̃k =

(4

X[k] (4.7)
N

To summarize, computing the N -point DFT of a signal implicitly introduces a periodic signal
with period N , so that all operations involving the DFT are really operations on periodic signals.
These operations will give the same results as operations on finite-duration signals providing that
the durations of all the signals involved in these operations are less than N .
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4.1.5 Application to filter design

The DFT can be used to design filters that approximate arbitrary specifications. Specifically,
suppose that the frequency response of the filter to be approximated is H(f). The frequency
sampling method of filter design consists in sampling H(f) at intervals of 1/N , then taking the
inverse DFT, yielding an FIR filter of length N . As shown by Equation (4.3), the unit-sample
response hN [n] of the FIR filter will be a time-aliased version of the desired unit-sample response
h[n]:

∞ ∞
hN [n] =

[
h[n] ∗

∑
δ[n− rN ]

]
RN [n] =

[ ∑
h[n+ rN ]

r=−∞ r=−∞

]
RN [n]

If the desired frequency response is smooth enough that h[n] decays to a negligible value for
n ≥ N , the frequency response HN(f) of this FIR filter will provide a good approximation to
H(f). On the other hand, if H(f) has abrupt discontinuities, the unit-sample response h[n]
will decay very slowly, and HN (f) will always show ripples regardless of the value of N (Gibbs’
phenomenon). Such ripples are apparent in Figure 4.3, which shows the frequency response of
two lowpass filters designed by frequency sampling with N = 33.

To be more specific, HN(f) is guaranteed to be exactly equal to H(f) for the N frequency
samples fk = k/N . In between the samples, HN (f) can deviate appreciably from H(f), particu-
larly if the latter shows abrupt discontinuities. An explicit formula for HN (f) can be derived by
Fourier transforming the above expression for hN [n]. Making use of the product and convolution
theorems, and noting that

1 1
RN [n]

N
←→ ΨN (f) =

� 1 − e−j2πfN

N

sin πfN
=

1 − e−j2πf
e−jπf(N−1) (4.8a)

N sin πf

shows that HN (f) is the cyclic convolution of ΨN (f) with a sampled version of H(f):
∞ ∞

HN (f) = H(f) δ(f k/N) ΨN (f) =
k=

∑
− ©

 
 ∗

−∞


k=

∑
H[k]δ(f − k/N)

−∞
©∗ΨN (f)

N−1

HN (f) =
∑

H[k] ΨN (f − k/N) (4.8b)
k=0

This gives an interpolation formula for HN (f) as a function of the frequency samples H[k].
Except for a phase delay, the interpolating function ΨN (f) is the same as the periodic inter-
polating function ΦN (t) defined in Chapter 1. This result is another example of the duality
between Fourier series and DTFTs. As shown in Fig. 4.2, ΨN (f) has N/2 − 1 side lobes in
addition to the main lobe centered at f = 0. These side lobes will result in ripple in HN (f)
when there are abrupt discontinuities between the frequency samples H[k].

To summarize, the frequency sampling method of design is not a good method for designing
filters with abrupt discontinuities. Despite this limitation, this method is very useful in practice
because it can be used for arbitrary filter specifications (magnitude and phase), and because it
does not require that the desired unit-sample response be available in closed form.

Cite as: Julie Greenberg, and Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image
Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on
[DD Month YYYY]. 

5



4.2 Properties of the discrete Fourier transform

Most properties of the discrete Fourier transform are easily derived from those of the discrete-
time Fourier transform by making the substitution of variables f = k/N . However, some care
is needed because, as we have just seen, the DFT is inherently an operation on periodic signals.

4.2.1 Linearity

The linearity of the DFT directly follows from that of the DTFT.

4.2.2 Symmetry

In deriving symmetry properties for the DFT, it is important to remember that both x[n] and
X[k] must be zero outside of the interval [0, N − 1]. As before, we use the following notation for
a signal and its DFT:

x[n] ←→ X[k]

With these conventions, the major symmetry properties for real signals are:

x[N − n] ←→ X∗[k] = X[N − k] .9a)

] + x ]
xe,N =

� x[n [N
[n

− n
]

] +� X[k X∗[k]
X

2
←→ R[k] = = X

2 R[N − k] (4.9b)

[ ] [ ]
xo,N [n] =

� x n − x N − n ]� X[k
jX

2
←→ I [k] =

−X∗[k]
= −jXI [N − k] (4.9c)

2

4.2.3 Cyclic convolution modulo N

One property which requires some discussion is the convolution theorem. We know that the
DTFT of the (linear) convolution of two signals x[n] ∗ h[n] is the product of their transforms
X(f) H(f). If a similar theorem could be demonstrated for the DFT, it would be of great
practical importance because one could reduce filtering operations to simple multiplications of
the DFTs. We will show that this is indeed possible under certain conditions. For this purpose,
we need to introduce the cyclic convolution modulo N of two periodic signals x̃N [n] and h̃N [n]:

N−1

x̃N [n] h̃©∗ N N [n] =
� ∑

x̃N [m] h̃N [n
m=0

−m] (4.10a)

The cyclic convolution of two periodic signals is shown in Fig. 4.4.

With this definition, the convolution theorem for the DFT becomes[
x̃N [n] ˜©∗ NhN [n]

]
RN [n] ←→ X[k] H[k] (4.10b)

where the periodic signals x̃N [n] and h̃N [n] are formed from x[n] and h[n] as in (4.5a).

(4
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Cyclic convolution differs from the linear convolution x[n] ∗ h[n] in that the result of a cyclic
convolution modulo N is periodic with period N , whereas the linear convolution of two N -point
signals is a finite-duration signal with length 2N−1. A 2N−1 point signal cannot be represented
by its N point DFT without introducing time aliasing. Therefore, in general, the inverse DFT of
X[k] H[k] is a time-aliased version of the linear convolution x[n] ∗h[n]. Only when the duration
of x[n] ∗ h[n] is smaller than the DFT length N do linear and cyclic convolution coincide.

To prove the cyclic convolution theorem (4.10), we form the product

N−1 N−1 N−1 N
j

−1

X[k] H[k] =
∑

x[m] e− 2πkm/N
∑

h[l] e−j2πkl/N =
∑ ∑

x̃ [m] h̃N N [l] e−j2πk(l+m)/N

m=0 l=0 m=0 l=0

The function that is being summed is periodic in both variables l and m. Therefore, as Figure
4.5 shows, summing over the square array 0 ≤ m, l ≤ N − 1 is the same as summing over the
parallelogram array defined by 0 ≤ m ≤ N − 1 and 0 ≤ l +m ≤ N − 1. Making the change of
variable n =� l +m, the product of the DFTs becomes

N−1 1

X[k] H[k] =

[
N−∑ ∑

x̃ ˜ j2πkn/N
N [m] hN [n e

n=0 m

−m]
=0

]
−

in which we recognize the DFT of the cyclic convolution x̃N [n]© h̃∗ N N [n]. This completes the
proof of (4.10).

By symmetry with (4.10), it is clear that the DFT of a product of signals is the cyclic convolution
of their DFTs (within a factor of N)

1
x[n] w[n] ←→ X̃N [k] NW̃N [k] RN [k] (4.11)

N

[
©∗

]

4.2.4 Parseval’s theorem for the DFT

An application of the cyclic convolution theorem is a form of Parseval formula for the DFT.
This is obtained by writing the cyclic convolution theorem for x[n] and x[−n]:

[ x̃N [n]©∗ N x̃N [−n] ] RN [n] ←→ X[k] X[−k] = |X[k]|2

Writing this formula for time zero gives Parseval’s theorem:
N−1 1

n

∑
x[n]2 =

=0

N−1∑
X

k=0

| [k]|2 (4.12)
N

This formula can be interpreted as a conservation of norm in a vector space.

4.2.5 Cyclic convolution example

The difference between linear and cyclic convolutions is best illustrated by an example. Consider
the rectangular signal of length M :

1

x[n] �
{
1 if −M−

=
0

n2 ≤ ≤ M−1
2

otherwise
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The linear convolution of x[n] with itself is a triangle of length 2M − 1:
M + n if − (M − 1) ≤ n ≤ 0

x[n] ∗ x[n] =

M − n if 0 ≤ n ≤ M − 1
0 otherwise

The signals x[n] and x[n]


∗ x[n] are shown in Fig. 4.6a for M = 7. Their DTFTs are shown in

Fig. 4.6e.

We will study the effect of the length of the period used on the results obtained by cyclic
convolution. We form the signal x̃N [n] according to (4.6a) and then perform cyclic convolution
modulo N of x̃N [n] with itself according to (4.10a). The result of the cyclic convolution is also
periodic with period N , and one period of this signal matches the time domain half of the DFT
convolution theorem (4.10b). In the frequency domain, this corresponds to taking the N -point
DFT of one period of x̃N [n] and squaring.

Figure 4.6b shows the signals x̃N [n] and x̃N [n]©∗ N x̃N [n] for N = M = 7, and Fig. 4.6f shows
their DFTs. The periodic signal x̃N [n] is a constant signal with amplitude 1. Therefore, the
cyclic convolution modulo N of x̃N [n] with itself is also a constant signal with amplitude N .
This can be interpreted as a completely time aliased version of the triangle seen in Fig. 4.6a.
The darkened points in the figure represent one period of each signal on the interval [0, N −
1], corresponding to the interval used to determine the DFT. Time aliasing is also evident
in the frequency domain, where the sampling in frequency is too coarse to give an adequate
representation of the underlying DTFT.

Figure 4.6c shows the signals x̃N [n] and x̃N [n]©∗N x̃N [n] forM = 7, N = 10, and Fig. 4.6g shows
their DFTs. In this case, partial time aliasing occurs. Again, the darkened points in the figure
represent one period of each signal on the interval [0, N − 1], corresponding to the interval used
to determine the DFT. In the frequency domain, the sampling in frequency is less coarse than
in Fig. 4.6f.

Finally, Fig. 4.6d shows the signals x̃N [n] and x̃N [n]©∗ N x̃N [n] for M = 7, N = 2M − 1 = 13,
and Fig. 4.6h shows their DFTs. The result of the cyclic convolution modulo N is a sawtooth
function with period N , corresponding to an unaliased version of the triangle resulting from
linear convolution in Fig. 4.6a. Restricting this result to the range [−(M − 1), M − 1] produces
a signal identical to the linear convolution of x[n] with itself. The representation of the spectrum
by its samples in Fig. 4.6h is much clearer than in Fig. 4.6f. We have seen that linear convolution
is the same of one period of cyclic convolution modulo N only when N is at least equal to the
duration of the linear convolution.

4.2.6 Convolution of two finite-duration signals using the DFT

This result is quite general: if x[n] and h[n] are both of finite duration, it is always possible
to compute the DFTs with a sufficient number of points to ensure that the cyclic convolution
gives the same result as the linear convolution. Specifically, if L is the length of x[n], and M is
the length of h[n], the length of the linear convolution is M + L − 1. Therefore, it suffices to
compute DFTs of length N ≥ M + L− 1 in order to make sure that the convolution will not
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be time-aliased. In this case, the following scheme for filtering the input x[n] by the filter h[n]
becomes possible:

1. Compute the N -point DFT of x[n]
2. Compute the N -point DFT of h[n]
3. Form the product Y [k] = X[k] H[k]
4. Compute the inverse N-point DFT of Y [k].

The interest of this method is that fast DFT algorithms allow this sequence of operations to be
carried out in less time than a direct (time-domain) implementation of the convolution sum.

4.3 Frequency-domain implementation of FIR filters

The preceding results show that linear convolutions can be realized by means of the DFT pro-
vided that the two signals to be convolved have finite durations. In many applications, however,
one needs to convolve a relatively short unit sample response (say a few tens to a few hundred
points) with a signal of indefinite duration. In such cases, the method outlined above may no
longer be applicable because the signal x[n] might be too long to fit in the computer memory.
Even if sufficient memory were available, computational times might be too long, and inaccu-
racies resulting from finite-precision arithmetic might be too great to make the DFT method
useful. In real time applications, having to wait until the signal has ended before the filtering
operation can be started would be clearly unacceptable. Fortunately, it is possible to modify
the DFT method of convolution to make it applicable to signals of indefinite duration. The
general idea is to first segment the signal x[n] into chunks of manageable size, then compute
the convolution of each segment with the unit-sample response h[n] by the DFT method, and
finally join the results of the convolutions for all segments. Some care is needed in joining
the convolved segments, however, because the cyclic convolution of a signal segment with the
unit-sample response will coincide with the linear convolution only for part of the segment. We
describe here one particular implementation called the overlap save method. A slightly different
method called overlap add is described in Oppenheim and Schafer.

4.3.1 The overlap-save method for convolution

The basis for the overlap-save method is that, if the unit-sample response h[n] of the FIR filter
is non-zero over the interval [0, M − 1], and if we use an N -point DFT to convolve h[n] with a
signal segment xk[n] of length N , then only the last N −M +1 points of the cyclic convolution
coincide with the linear convolution. This is because, for 0 ≤ n < M − 1, the result of the
cyclic convolution is a weighted sum of samples from both the beginning and the end of the
segment xk[n]. The overlap-save method of convolution is shown in Fig. 4.7 and is described
below.

1. Divide the signal x[n] into overlapping segments xk[n], each of length N , with an overlap
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of M − 1 points between segments:
�

{
x[n + k (N −M + 1)] if 0 ≤ n N

xk[n] =
≤ − 1

0 otherwise

2. Form the cyclic convolution modulo N

zk[n] =
�
xk[n]©∗ Nh[n]

by multiplying the N -point DFTs of xk[n] and h[n] and taking the inverse DFT of the
result. The resulting signal has length N .

3. Form a new sequence yk[n] of length N −M + 1 by discarding the first M − 1 points of
zk[n]:

z [n] if M 1 n N 1
yk[n] =

�
{

k − ≤ ≤ −
0 otherwise

4. Form the final result y[n] by joining the yk[n] with no overlap:

∞
y[n] =

k

∑
yk[n

=0

− k (N −M + 1)]

4.4 Fast Fourier transforms

The term fast Fourier transform (FFT) refers to a family of efficient algorithms for implementing
the discrete Fourier transform. While computation of an N -point DFT by the straightforward
method implied by the definition (4.5) requires N2 complex multiplications, FFT methods re-
quire only of the order of N log2 N complex multiplications. The savings in computation are
considerable when N is large: for example, for N = 4096, an FFT requires 300 times fewer
operations than a straightforward DFT. Perhaps more than any other factor, it is the invention
of the FFT by Cooley and Tukey in the 1960’s that has made possible many of the applications
of digital signal processing.

We will only discuss one particular method called the decimation-in-time algorithm among the
family of FFT algorithms. Alternative algorithms are described in Oppenheim and Schafer.

4.4.1 Decimation-in-time algorithm

The principle of decimation in time, which is illustrated in Fig. 4.8, consists in dividing an
N -point DFT (where N is a power of two) into a weighted sum of progressively shorter DFTs.
Specifically, the DFT to be computed is

N−1

X[k] =
∑

x[n] W nk
N (4.13a)

n=0

where we have introduced the short-hand notation

WN =� e−j2π/N (4.13b)
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The summation over n in (4.13a) can be decomposed into two separate sums, one over the
even-numbered values of n and the other one over the odd-numbered values. Specifically, if we
write an even n in the form 2r, the sum over even-numbered terms is:

N/2−1

Xe[k] =
r

∑
x[2r] W 2rk

N (4.14a)
=0

Similarly, by making the change of variable n = 2r + 1, the sum over odd-numbered terms
becomes

N/2−1 N/2−1

W k
N Xo[k] =

r

∑ (2
x[2r + 1] r+1)k

WN = W k
N

∑
x[2r + 1] W 2rk

N (4.14b)
=0 r=0

With these definitions, (4.13a) becomes:

X[k] = Xe[k] + Xo[k] W k
N (4.14c)

Assuming that N is a multiple of 2, one has

W 2rk = ej4πkr/N
N = W rk

N/2

so that each of the sums in (4.14a) and (4.14b) represents a DFT of length N/2. Therefore,
we have decomposed an N -point DFT into two N/2 point DFTs followed by N complex multi-
plications by the W k

N factors in (4.14c). In fact, only N/2 of these multiplications are distinct
because WN−k

N is the complex conjugate of W k
N . If N/2 is a multiple of 2, each of the two

N/2-point DFTs (4.14b) and (4.14c) can further be decomposed into two DFTs of length N/4,
each followed by N/4 distinct complex multiplications. Clearly, if N is a power of 2, these
decompositions can be repeated log2 N times until we are left with N/2 two-point DFTs, which
are simple operations requiring no multiplication. For each of these log2 N decompositions,
there is a total of N/2 complex multiplications, so that the total number of multiplications is
about of N/2 log2 N .

4.4.2 Computational advantage of the FFT in filtering applications

It is of interest to compare the amount of computation required in the direct implementation
of a convolution with that for the overlap-save method based on the FFT. Specifically, assume
that the input signal x[n] has a very long duration compared to the length M of the filter’s unit
sample response, so that we can ignore overhead such as end effects and computation of the DFT
of the unit-sample response. The direct (time-domain) convolution requires M multiplications
for each input point. On the other hand, if we use N -point FFTs to implement the overlap-save
method, we require:

• N/2 log2 N complex multiplications for computing the forward FFT of each signal segment,

• N complex multiplications for forming the product of the DFT of the segment with the
DFT of the filter’s impulse response

• N/2 log2 N complex multiplications for the inverse DFT.
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This makes a total requirement of N(log2N+1) complex multiplications for each signal segment.
Among the N points in each segment, only N −M +1 are retained in the output because of the
M − 1 point overlap between successive input segments. Thus, the number of multiplications
per input point is N NN−M+1 (log2 + 1).

The number of multiplications per input point required to implement an FIR filter are shown
as a function of M in Fig. 4.9 for both direct convolution and overlap-save methods with
different values of N . Clearly, for filters longer than about 10 points, the overlap-save method
is advantageous. It is also apparent that, for each filter length M , there is a value of the FFT
length N that provides optimum efficiency. Because we have counted complex multiplications,
these calculations apply to complex signals. For real signals and filters, direct convolution is
more efficient because it can be computed entirely with real multiplications, while overlap-save
still requires complex multiplications, each of which involving 4 real multiplications. Thus, a
more realistic performance crossover between the two methods is M ≈ 40 for real signals.

4.5 Summary of Fourier transforms

In these notes, we have studied four different kinds of Fourier transforms:

1. The continuous-time Fourier transform (CTFT)

2. The discrete-time Fourier transform (DTFT)

3. The continuous time Fourier series (CTFS)

4. The discrete Fourier transform (DFT) or discrete Fourier series (DFS)

The last three transforms can be considered as special cases of the CTFT obtained by sampling
(multiplying by a periodic impulse train) in either the time domain or the frequency domain, or
both. Sampling in one domain corresponds to an aliasing operation (convolution by a periodic
impulse train) in the opposite domain. To each of these transforms correspond both a convo-
lution theorem and a product theorem. Convolutions can be either discrete or continuous, and
either cyclic or “linear”. Which of these four types of convolutions should be used follows from
the properties of the signals to be convolved: discrete convolution for discrete signals, cyclic
convolutions for periodic signals, and convolution modulo N for signals that are both discrete
and periodic. Table 4.1 summarizes the type of signals to which each of the 4 transforms applies,
and gives the appropriate convolution and product theorems.

4.6 Summary

TheN -point discrete Fourier transform of a signal is obtained by sampling its DTFT at frequency
intervals of 1/N . If the duration of the signal is no more than N , the N -point DFT provides a
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complete representation of the signal, and is related to the signal by the finite formulas

N−1

X[k] =
∑

x[n] e−j2πkn/N

n=0

1
x[n] =

N−1∑
X[k] ej2πkn/N

N
k=0

These formulas are mathematically the same as the Fourier series for discrete, periodic signals.
This is because sampling at intervals of 1/N in frequency inherently generates an N -periodic
signal x̃[n], which coincides with the finite-duration signal x[n] over one of its periods.

A major application of the DFT is the efficient implementation of convolution (filtering) op-
erations for either two signals of finite duration or one FIR filter and one signal of indefinite
duration (e.g. using the overlap-save method). These methods have to be used with caution
because the product of two N -point DFTs is not the transform of linear convolution of the two
signals, but the transform of their cyclic convolution modulo N :[

x̃N [n] ˜©∗ NhN [n]
]
RN [n] ←→ X[k] H[k]

Cyclic convolution coincides with linear convolution only if the length of the convolved signal is
less than N .

4.7 Further reading

Oppenheim and Schafer: Chapters 8 & 9.
Siebert: Chapter 18, Sections 3-4.
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Figure 4.1: Representation of the DFT of a discrete-time signal, x[n], by sampling its DTFT,
X(f). X̃s(f)PN (f) and x̃s[n] = x[n] ∗ pN [n].
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Figure 4.2: Reconstruction of the DTFT of x[n] from DFT of the periodic signal x̃N [n]. x[n] =
x̃N [n]RN [n] and X(f) = X̃N (f)©∗RN (f).
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Figure 4.3: Filter design by frequency sampling. (a) Samples of ideal lowpass frequency response.
(b) Addition of one transition sample. (c) Magnitude of frequency response for filter designed
based on frequency samples in (a). (d) Magnitude of frequency response for filter with one
transition sample as in (b).
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Figure 4.4: Cyclic convolution modulo 5 of periodic signals x[n] and h[n].

Figure 4.5: Regions of summation used in proving the cyclic convolution theorem.
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Figure 4.6: (a) The rectangular pulse x[n] and the linear convolution of x[n] with itself. (b)
The periodic signal x̃7[n] obtained by repeating x[n] with itself at intervals of 7 points and
the cyclic convolution of x̃7[n] with itself. (c) The periodic signal x̃10[n] obtained by repeating
x[n] with itself at intervals of 10 points and the cyclic convolution x̃10[n] with itself. (d) The
periodic signal x̃13[n] obtained by repeating x[n] with itself at intervals of 13 points and the
cyclic convolution of x̃13[n] with itself. (e) DTFT of the signals in (a). (f) DFT of one period
of the signals in (b). (g) DFT of one period of the signals in (c). (h) DFT of one period of the
signals in (d).
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Figure 4.6 continued
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Figure 4.7: The overlap-save method of convolution (after Oppenheim and Schafer).
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FFT algorithm for N = 8 (after Oppenheim and Schafer).Figure 4.8: The decimation-in-time
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Figure 4.9: Number of complex multiplications per input point as a function of filter length for
overlap-save method (solid lines: N is FFT length), for direct convolution with complex data
(dotted line), and for direct convolution with real data (dashed line).

Figure 4.10: Summary of Fourier transforms
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