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Chapter 1 - DATA ACQUISITION

(©Bertrand Delgutte 1999

Introduction

The goal of data acquisition is to capture a signal and encode in a form suitable for computer
processing with minimum loss of information. Data acquisition typically consists of three stages:
transduction, analog conditioning, and analog-to-digital conversion. Transduction is the con-
version from one form of energy to another. In present technology, the only form of energy
suitable for encoding into a computer is electrical energy, therefore signals need to be converted
to analog voltages whose waveforms are ideally the same as those of the original signals. For
example, we use a microphone to transduce an acoustic signal, or an electric thermometer to
measure temperatures. Transducers are specific to each type of signal, and the study of such
devices is beyond the scope of these notes.

The second stage of data acquisition, analog signal conditioning, usually consists of amplifying
and filtering the analog signal measured with a transducer. Because the purpose of this stage is to
provide a good match between the typically low-amplitude, wide-bandwidth transducer signals
and the analog-to-digital (A/D) converter, conditioning is best understood after studying A/D
conversion.

An analog-to-digital converter is a device that transforms a continuous-time signal measured
with a transducer into a digital signal that can be represented in a computer. Conceptually,
it can be divided into a series of two operations (which are realized simultaneously in actual
devices): sampling, in which the continuous-time, analog signal is converted into one that is only
defined for discrete times, but whose amplitude can take arbitrary values, and quantization, in
which a continuous-amplitude signal is converted into a digital signal that can only take a
finite set of values. The sampling operation is particularly critical if we want to avoid loss of
information in the conversion.

1.1 Continuous-time and discrete-time signals

Many signals are continuous-time in the sense that they are defined at arbitrarily-close points in
time. Sine waves are important examples of continuous-time signals because Fourier’s theorem
states that most signals of practical interest can be decomposed into an infinite sum of sine
waves. A continuous-time sine wave is defined by:

z(t) = acos(Qt + ¢) = acos(2nFt + ) (1.1)

where F' is the frequency, €2 is the angular frequency, a the amplitude, and ¢ the phase.
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Discrete-time signals (also called time series) are defined over the set of integers, that is, they
are indexed sequences. A discrete-time sine wave is defined by

xz[n| = acos(wn + ¢) = acos(2mfn + ¢) (1.2)

It is important to understand that the frequency of a discrete-time sinusoid is not uniquely
defined. This fundamental ambiguity is a consequence of the basic trigonometric result that the
value of a sinusoid does not change if an integer multiple of 27 is added to its argument:

cos(#) = cos(0 + 27k), where k is an integer (1.3)
Adding the 27kn to the argument of (1.2), and applying (1.3), we get
z[n] = acos(2w fn + ¢) = acos(2mw fn + 2wkn + ¢)

Two cases must be distinguished. If £k > —f, this is equivalent to a sinusoid with frequency
f + k with no change in phase.

z[n] = acos(2rfn+ ¢) = acos(2n(f +k)n+¢), k>—f (1.4a)

On the other hand, if £ < —f, (1.4a) leads to a negative frequency. To avoid this, we introduce

= —k, and make use of cos() = cos(—6), to obtain a sinusoid of frequency [ — f with a reversal
in phase:

z[n] = acos(2rfn+ ¢) =acos2n(l — f)n—¢), 1> f (1.4d)

Thus, a discrete-time sinusoid with frequency f is identical to a same-phase sinusoid of frequency

f+k, where k is any integer greater than — f, or to a phase-reversed sinusoid of frequency [ — f
with [ > f.

The above relations are more concisely expressed using complex exponential notation. Specifi-
cally, (1.2) can be written as:

z[n| = Re [ej(Qﬂf"Jr‘z’)} = Re [e*j(%f”*‘z’)} (1.5)

Because value of a complex exponential does not change if a multiple of 27 is added to its
argument, we get:

e = 0] < e st 1

which is equivalent to (1.4ab). Because of this fundamental frequency ambiguity, we will often
implicitly assume that the angular frequency of a discrete-time sinusoid is restricted to the range
—n < w <, or, equivalently, that —% <f< %

1.1.1 Sampling a continuous-time signal

Certain signals are inherently discrete, for example the periodic measurements of a patient’s
temperature, or a stock-market index at daily closing times. More often, discrete-time signals
are obtained by sampling a continuous-time signal at regular intervals:

z[n] £ 2(nT}), —oo<n < oo (1.7)

T is the sampling interval, and F = ’11’5‘ is the sampling frequency or sampling rate. Because
we use square brackets for discrete-time signals, and parentheses for continuous-time signals, it

(198}

is clear that the two “z” in (1.7) represent different signals.

2
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1.1.2 Sampling a sinusoid - Aliasing

For example, assume that we sample a continous-time sinusoid as in (1.1). The corresponding
discrete-time signal is:

z[n] = x(nTs) = acos(2nFnTs + ¢) = acos(2rnF/Fy + ¢) (1.8)
This is a discrete-time sinusoid whose frequency is related to that of the original signal by:
w=QTs, and f=F/F; (1.9)

Equation (1.9) of great practical importance when processing signals with digital systems because
it relates the dimensionless frequency f used by the computer to the physical frequency F'.

Despite the simplicity of (1.8), it hides a difficulty arising from the ambiguity of frequency for
discrete-time sinusoids. Specifically, from (1.4), the same discrete-time signal z[n] in (1.9) could
have been obtained by sampling any of the following continous-time sinusoid at the same rate
F:

xp(t) = acos(2n(F 4+ kFs)t + ¢), k> —F/F; (1.10a)

or
x)(t) = acos(2n(lFs — F)t — ¢), 1> F/F;s (1.10a)

In other words, once the signal is sampled, it is not possible to know if the frequency of the
original continuous time signal was F or F'+ F; or F' 4 2Fj, etc, or, with phase reversal, Fs — F
or 2F; — F, etc. This phenomenon is known as aliasing because frequencies may not be what
they appear to be once a continuous-time signal is sampled. Figure 1.5 illustrates how two
continuous-time sinusoids with different frequencies can lead to identical discrete-time signals.
Figure 1.14 shows, in the frequency domain, some of the continuous-time sinusoids that are
aliased onto the same discrete-time signals.

In practice, aliasing is not an issue for single sinusoids so long that the frequency of the analog
signal is known withing a factor of F,/2. Specifically, assume that the discrete-time signal (1.2)
is obtained by sampling a continous-time signal z(t). Further assume that we know that the
frequency of the original signal was between kFy/2 and (k+1)Fs/2 , where k is a positive integer.
Then the analog signal can be uniquely determined as:

x(t) = cos(2m(f + k/2)Fst + ¢), if k is even (1.11a)

z(t) = cos(2m((k +1)/2 — f)Fst —¢), if kis odd (1.11b)

1.2 The Nyquist sampling theorem

The purpose of sampling continuous-time signals is to allow their processing by digital computers.
This is useful only if the information carried by the original signal is retained in the sampled
version. Intuitively, it seems that, if the continuous-time signal is sufficiently smooth, sufficiently
close samples will provide a good approximation to the original signal. The Nyquist sampling
theorem formalizes this intuition: It states that, if a signal (¢) contains no frequency components
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higher than W, it can be exactly reconstructed from samples taken at a frequency F; > 2W.
Further, the Nyquist theorem gives an explicit interpolation formula for reconstructing x(t) from
the discrete-time signal z[n]:

x(t) = _Z x[n|o(t — nTs) (1.12a)
with ey
o(t) = % (1.12b)

This interpolation formula expresses z(t) as a linear function (a weighted sum) of the samples
z[n]. The time-dependent weights ¢(t — nTy) are obtained by delaying a basic function ¢(t)
shown in Fig. 1.4. This function verifies the property

1 ifn=0

0 otherwise (1.13)

o) = {
This property implies that z(t) = z[n] for t = nTj, which is reassuring since this is the very
definition of sampling.

A signal is said to be sampled at the Nyquist frequency if Fy is exactly 2W. Signals sampled at
a rate higher than the Nyquist frequency are said to be oversampled.

1.2.1 Sampling theorem seen in the frequency domain

A general proof of the Nyquist sampling theorem will be given in Chapter 5 using Fourier
transforms. Appendix 1.A.2 gives a derivation of the sampling theorem in the special case of
periodic signals. This case is easily handled because a bandlimited periodic signal is entirely
specified by a finite set of Fourier series coefficients. Fourier series are introduced in Appendix
1.A.1. Here, we give a qualitative argument for the Nyquist sampling theorem based on an
informal version of the Fourier theorem.

The Fourier theorem states that any reasonably well behaved signal can be expressed as a “sum”
of sinusoids or, alternatively, complex exponentials. Informally, one has:

x(t) = ZA(F) cos(2nFt+ ¢(F)), 0<F<W (1.14)
F

where the “sum” is from F' = 0 to a maximum frequency W if z(¢) is bandlimited. If this
signal is sampled at a rate F; > 2W, each continous sinusoid with frequency F' inside the sum
is converted into a unique discrete-time sinusoid of frequency f = F/Fj:

aln] =Y A(fF)cos2nfn+ ¢(fFy)), 0<f<1/2 (1.15)
f

Because the discrete-time frequencies are all distinct, there is no loss of information, and it is
possible to reconstruct each component of the original signal, and therefore the signal z(t), from
z[n]. In fact, using (1.11), this would work even if the original signal had been limited to any
frequency range from kF,/2 to (k + 1)Fs/2, where k is any positive integer, so long that the
range of frequencies is known. This situation is illustrated in Fig. 1.15.
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1.2.2  Aliasing for complex signals

What happen when the Nyquist criterion is not met, i.e. when the sampling rate Fy is less
than twice the frequency range W of the analog signal? In that case, there is no longer a one-
to-one relationship between frequency components of the analog signal z(¢) and those of the
discrte-time signal z[n]. Specifically, frequency components of z(t) higher than F/2 are aliased
into low-frequency components that interact with low-frequency components of z(t). These
interactions can be additive if the co-aliased components are in phase, or destructive if they are
out of phase. In such cases, there is irreversible loss of information, i.e. it is no longer possible
to reconstruct the anlog signal from the discrete-time signal.

To illustrate these effects of aliasing, consider the two-component signal shown in Fig. 1.6:
x(t) = cos 2 F1t + cos(2mFyt + ¢), (1.16)

with Fy < Fy. If this signal is sampled at frequency Fy = F} + Fb, the low-frequency component
F does not alias because F; < Fs/2, but the high-frequency component F5 is aliased to Fy—Fy =
F1, with a phase reversal:

x[n] = cos 2w fin + cos(2w fin — ¢), f1 = F1/F; (1.17)

If the phase ¢ is zero, the two components of the discrete-time signal add in phase, so that the
two-component discrete-time signal is undistinguishible from a single sinusoid that has double
the amplitude of either component. On the other hand, if ¢ = 7, the two components have
opposite phases, so that the aliased component exactly cancels the f; component, and the
sampled signal z[n| is identically zero. This case is shown in Fig. 1.6.

In practice, one can always avoid aliasing by lowpass filtering the continuous-time
signal z(t) before sampling. An analog filter with sharp cutoff is desirable to avoid having
to oversample the signal. Actual analog filters always require a finite transition band between
the passband and the stopband. Even if the signal is known to be band-limited, it
is still important to use an antialiasing lowpass filter because the signal might
be contaminated by broadband noise whose high-frequency components would be
aliased into the low-frequency range of the signal.

1.3 Quantization

The second conceptual step in analog-to-digital conversion consists in quantizing the sampled
signal. A quantizer takes as input a discrete-time, continuous-valued signal z[n], and produces a
signal zg[n| that can only take a finite number of values. In one common quantization scheme,
called rounding, the quantizer output xzg[n] is equal to kQ, where @ is the quantization step,
and k is the integer closest to z[n]/@Q. In most quantizers, the number of quantization steps is
a power of two of the form 27, where B is called the number of bits of the quantizer. With a
B-bit quantizer, one can only encode signals whose values lie in the range

—Viax < z[n] < Vipax (1.18)
5
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where Vinax is related to the quantization step by:
Vinax = 2571Q (1.19)
Figure 1.8 shows zg[n] as a function of x[n] for B =4 and @ = 1, corresponding to Viax = 8.

One way to describe the effects of quantization is to write the quantized signal zg[n] as the sum
of the input signal xz[n] and a quantization error signal q[n|:

zq[n] £ [n] + qln] (1.20)

A convenient characterization of the degradation caused by quantizing is the signal-to-noise
ratio (SNR):

gNR 2 Imean power i.n x[n] s Py (121)
mean power in g[n| P,
For the rounding scheme of quantization, one always has:
—Q/2 <qn] £ Q/2 (1.22)

If the quantization step is sufficiently small relatively to the signal amplitude, and the signal
is sufficiently irregular, the quantization error signal will be equally likely to take any values
between —@Q/2 and Q)/2. We will show in Chapter 11 that, under these conditions, the mean

power in the error signal is:
2
P, == 1.23

The mean signal power P, can be written as a product of three terms:

Pr (Xuw\?
P (7)) Vi

max

(1.24)

where Xpax is the maximum value of z[n].

The first term on the right side of (1.24) is the reciprocal of the peak factor Kp. This is a
dimensionless number that characterizes the shape of the signal, and does not change if the
signal is multiplied by a constant gain. For example, for a sinusoid, the peak factor is always
2. For signals that contain sharp pulses, with little energy between pulses, the peak factor is
larger.

The second term on the right side of (1.24) represents the ratio of the peak amplitude in the
signal to the maximum amplitude that can be encoded by the quantizer. Because this ratio must
always be smaller than one to avoid clipping, we will call it the clipping factor Ko. Making use
of (1.23), (1.24), and (1.21), the signal-to-noise ratio becomes:

12K2 V 2 3K2 22
N C Ymax C 1.2
SNR (QZKP Kp ( 5)

Because the signal-to-noise ratio can vary over a wide range, it is convenient to express it in

decibels (dB):

Py
q
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This formula shows that the signal-to-noise ratio (in decibels) increases linearly with the number
of bits in the quantizer at a rate of 6 dB/bit. Note also that, for a given quantizer and type of
signal, the best signal-to-noise ratio is achieved if the clipping factor is 1, i.e. if the maximum
signal amplitude matches the maximum quantization level. It is also apparent that signals that
have low peak factors can be quantized with better signal-to-noise ratios than signals with high
peak factors. For example, for 12-bit quantization of a sine wave, and optimal clipping factor,
the signal-to-noise ratio will be 73.8 dB. Under most circumstances quantization error for a
12-bit quantizer is small relative to other sources of noise.

1.4 Oversampling analog-to-digital converters

In the conventional analog-to-digital techniques described above, the signal is sampled at a rate
close to the Nyquist limit using a high-resolution A /D converter (typically 12 bits or more). The
last decade has seen the development of new A/D conversion techniques that are characterized
by very high sampling rates (many times the Nyquist rates), and low-resolution quantizers, as
low as 1 bit in some cases. In effect, these schemes are based on a trade off between sampling rate
and quantization noise. Very high sampling rates provide the additional flexibility of shaping
the spectrum of the quantization noise so that it lies mostly in frequency regions well above the
the signal, leading to an increase in signal-to-noise ratio in the frequency range of interest.

1.4.1 Oversampling

Assume that we want to sample a signal bandlimited to W Hz. From Nyquist’s theorem, the
sampling rate F should be higher than 2, and, to ensure efficient processing and storage, it
is best that Fy not be much greater than the Nyquist limit. For example, audio signals, which
are bandlimited to 20 kHz, are typically sampled at rates of 44-48 kHz. In oversampling A/D
systems, this operation is accomplished in two steps (Fig. 1.9). First, the signal is sampled at
a rate K Fs much higher than the Nyquist limit, i.e. K >> 1. Second, this high-rate signal
is digitally downsampled or decimated to the desired rate Fs. In order to prevent aliasing,
the downsampling operation must be preceded by an antialiasing filter with a cutoff frequency
F. < Fy/2. This antialiasing filter plays the same role as in conventional A/D conversion, with
the important difference that it is implemented digitally rather than using analog circuitry.
Thus, in oversampling systems, there are two antialiasing filters, an analog one preceding the
high-rate A/D converter, and a digital filter preceding the decimation stage.

The oversampling technique has two major advantages over conventional A /D systems.

1. The requirements on the analog antialiasing filter are much less severe than
in conventional systems. In conventional systems, there is only a narrow fre-
quency band between the upper frequency limit W of the signal and the Nyquist
frequency Fs/2, so that a “brickwall” filter with sharp cutoffs is required. In
oversampling systems, the Nyquist frequency K Fy/2 is much greater than W,
so that a filter with gentle roll-off suffices. In many cases, it is possible to use
a simple RC circuit for antialiasing in oversampling systems. On the other
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hand, the requirements on the digital antialiasing filter preceding the decima-
tion stage are quite stringent. This, however, is much less of a problem because
it is usually easier and less costly to design digital filters with sharp cutoffs than
analog filters. Thus, oversampling systems trade complexity in analog design
for complexity of digital design.

2. Oversampling systems achieve moderate improvements in signal-to-noise ratio
over conventional systems. This can be understood from a frequency-domain
analysis of the quantization noise. If the input signal is sufficiently irregular,
the quantization noise can be modeled as white noise, meaning that it occupies
the entire frequency band of the A/D converter. Because the total noise power
depends only on the quantization step, the wider the bandwidth, the smaller the
quantization noise per unit bandwidth. In conventional systems, the bandwidth
of the quantization noise is Fs/2, while in oversampling systems, it is K Fy/2.
Thus, the signal-to-noise ratio in the frequency band of interest (F < W) will
be K times greater in oversampling systems than in conventional systems, even
though the number of bits in the quantizer remains the same. The additional
quantization noise in frequency regions above Fj/2 is effectively removed by the
digital antialiasing filter. Thus, the digital filter has a dual function in over-
sampling systems, that of antialiasing, and that of eliminating high-frequency
quantization noise.

Despite these advantages, oversampling systems as described above are not practical for ap-
plications such as audio signal processing. Consider specifically an audio signal sampled at 48
kHz using a 16-bit conventional A/D converter. With an oversampling system using a sampling
rate of 3 MHz (64 times oversampling), one would need a 13-bit A/D converter to obtain the
same signal-to-noise ratio. Such combination of high rates and high resolution are very costly,
if not beyond the limit of current technology. Thus, it is necessary to reduce the resolution
of the A/D converter if oversampling is to be used. This can be accomplished with no loss in
signal-to-noise ratio by moving most the quantization noise to frequencies above the region of
interest, a technique known as noise shaping.

1.4.2 Noise shaping

The most widely used technique for noise shaping is sigma-delta modulation. As shown in Fig.
1.10, sigma-delta modulation consists of A/D converting the integral (sigma) of the difference
(delta) between the original signal and the quantized signal. The A/D converter has typically
low resolution, as low as 1 bit, but its sampling rate is very high, much as in the oversampling
systems described above. If the converter has 1 bit, its output will consist of a sequence of +1
and —1 (Fig. 1.11). If the input signal is near zero, there will be an equal number of plus and
minus output samples. If the input amplitude is increased, the percentage of positive output
samples will increase. By averaging over many samples, the digital antialiasing filter that follows
the sigma-delta converter is able to reconstruct the input signal.

In the diagram of Fig. 1.10, the A/D and D/A converters are inverse of one another (except for
the addition of quantization noise by the A/D converter), so that they can be eliminated from
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the diagram. Specifically, the sigma-delta modulator can be approximated by the linear model
shown in Fig. 1.12. In this model, if z(¢) represents the input signal, y(¢) the output, and ¢(t)
the quantization noise, one has:

¢
u(®) = [ (ar) = () dr + a0 (1.27)
Converting to the frequency domain, and rearranging terms, we obtain:

1+ j20F 1+ j2nF

Thus, the output is the sum of a term due to the signal and a term representing the quantization
noise. At low frequencies (F' << 1), the signal term approaches X (f), while the noise term
approaches 0. On the other hand, at high frequencies, the noise term becomes much higher
than the signal term. Thus, the sigma-delta converter acts as a lowpass filter with respect to
the signal, and as a highpass filter with respect to quantization noise. Fig. 1.13 compares
the frequency distribution of the quantization noise in oversampling systems with and without
noise shaping. The sigma-delta converter effectively moves most the quantization noise beyond
the frequency band of the signal, yielding high signal-to-noise ratio despite coarse quantization.
Sigma-delta converters are widely used in digital audio applications.

(1.28)

1.5 Summary

The conversion of a continuous-time signal into a digital signal can be decomposed into two con-
ceptual stages, sampling and quantization. For band-limited signals, sampling can be achieved
without loss of information providing that the sampling frequency Fj is greater than twice the
highest frequency in the signal. In this case, the continuous-time signal can be exactly recon-
structed from the samples by means of the interpolation formula:

o

x(t) = Z x[n]é(t — nTs)

n=—oo

where the interpolating function is given by
sin wFt

¢t) = — i

If a signal is sampled at a rate lower than the Nyquist frequency, frequency components above
half the Nyquist frequency get aliased into low-frequency components, resulting in an unrecov-
erable loss of information. Aliasing can (and should) always be avoided by lowpass filtering the
signal before sampling.

Quantization consists in converting a continuous-amplitude signal into a discrete-valued signal.
A measure of the degradation produced by quantization is the ratio of the signal power to the
power in the quantization error signal. This signal-to-noise ratio increases linearly with the
number of bits in the quantizer at a rate of 6 dB per bit, and is largest when the peak signal
amplitude matches the voltage range of the quantizer. In many circumstances, commercial
quantizers provide signal-to-noise ratios that exceed the signal-to-noise of the measurement, so
that quantization is of little consequence in practice. Oversampling combined with noise shaping
make it possible to achieve high signal-to-noise ratio with low-resolution quantizers.
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1.6 Further reading

Siebert, Chapter 12, Sections 3-5; Chapter 14, Section 3

Oppenheim and Schafer, Chapter 4, Sections 1, 3, 8, and 9; Chapter 6, Section 6
Oppenheim, Willsky and Nawab, Chapter 7, Sections 1-3

Karu, Chapters 19 and 20

1.A.1 Fourier series

1.A.1.1 Sine-cosine form

The basic idea behind Fourier series is that a periodic signal with period T can be expressed as
a sum of sine waves at frequencies 1/T,2/T,3/T,...,k/T, ... Specifically, consider how we might
approximate a periodic signal x(t) by the sum of sinusoids %(t):

K K
23" Ay cos(2mkt/T) + 3 By sin(2rkt/T) (1.A.1)

k=0 k=1
To obtain the best approximation, we minimize the average power P, of the error signal e(t) 2

x(t) — Z(t) over one period of x(t):
1 K ’
A .

P, = 7/ =7 / ( ZAk cos(2mkt/T) — I;Bk s1n(27rk:t/T)> dt  (1.A.2)

This technique of minimizing the power in an error signal representing the difference between
the desired signal and an approximation (or estimate) is very widely used in signal processing,
and is called least-squares estimation. To minimize P, we set to zero its partial derivatives with
respect to each of the A and By coefficients.

A _E/TCOS(Q lt/T)( (t)—iA cos(2 k:t/T)—iB sin(2 k:t/T)) dt =0 (1.A.3a)
8A1_To " ! k:()k " k:lklnﬂ- - o

0B

OF _ 2 / " sin(2rit/T) (x(t) - f Ay cos(2ktT) — i By sin(27rkt/T)> dt=0 (1.A3b)
0 k=0

Simplifying and rearranging terms, this becomes

T T
/ x(t) cos(2nlt/T)dt = ZAk / cos(2mkt/T) cos(2nlt/T) dt+z By, / sin(2nkt /T cos(2nlt/T)dt
0 =1 0
(1.A.4a)
T T
/ x(t) sin(2nlt/T)dt = Z Ay, / cos(2mkt/T) sin(2nlt/T) dt+z By, / sin(27kt/T) sin(2nlt/T)dt
0 k=1 0
(1.A.4b)

10
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It can be shown that

. T ifk=1=0
/ cos(2mkt/T) cos(2mit/T)dt = | T/2 it k=1>0 (1.A.5a)
0 0 if k1
T
/ sin(2mkt /T) cos(2nlt/T)dt =0 0 <k, | < Ko (1.A.50)
0

T 0 ifk=1=0
/ sin(2rkt /T) sin (20t /T)dt = | T/2 it k=10 (1.4.5¢)
0 0 if k1

Because these integrals are zero except when the two signals within the integral are the same, it
is said that the sine and cosine functions for frequencies that are multiple of 1/T" are orthogonal
over the interval [0,7]. This term is justified by analogy with orthogonal vectors whose dot
product is equal to zero. Replacing the integrals in (1.A.4) by their values from (1.A.5), we

obtain: e
Ag = = / (t)dt (1.4.6a)
T Jo
2 T
A= T z(t) cos(2mit/T)dt 1<I<K (1.A.6b)
0
2 T
Bi=7 / 2()sin(2rlt/T)dt 1<1<K (1.4.6¢)
0

These formulas for computing coefficients that provide the best approximation to z(¢) do not
change when the number of coefficients in the approximation increases. This is a consequence
of the orthogonality of the sine and cosine functions.

Fourier’s theorem states that, if the function z(t) is reasonably well-behaved (i.e. if it does not
have “too many” discontinuities), the average power P, in the error signal tends to zero when
the number of coefficients K increases. This means that the estimate Z(¢) becomes arbitrarily
close to z(t), and in the limit one can write

x(t) = i Ay cos(2mkt/T) + i By sin(2rkt/T) (1.A.7)
k=0 k=1

1.A.1.2 Exponential form

Equations (1.A.6) and (1.A.7) are called the sine-cosine form of Fourier series. Simpler equations
can be obtained if we introduce the exponential form, which is based on the complex Fourier
series coefficients Xj:

Xo é AO (1A8a)
Xp 2 (A, —jBY)/2 k>1 (1.A.8)
X_p 2 (A, +jB)/2  k>1 (1.A.8¢)
Conversely, the sine and cosine coefficients can be computed from the complex Fourier coeffi-
cients:
AO == XO (1A9a)
11
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A= X+ X 4 k>1 (1.A.90)
By = j( X — X_k) k>1 (1.A.9b)

Replacing the Ay and By in (1.A.6) and (1.A.7) by their expressions as function of X}, we obtain
the exponential form of the Fourier series:

a(t)= > Xyel? /T (1.A.10)
k=—0oc0
with
1T ,
Xp= = / 2(t)e= 2RI T gy (1.A.11)
0

Note that the summation in (1.A.10) is from —oo to oo, and that there is a minus sign in the
argument of the complex exponential in (1.A.11).

1.A.1.3 Properties

Fourier series have useful symmetry properties that are easily verified:
x(t) isreal iff X, = X
X} denotes the complex conjugate of Xj. Assuming now that x(t) is real,
z(—t) = z(t) iff Xpisrealand X_j = Xy
x(—t) = —x(t) iff X isimaginary and X_j = —Xj

x(t—T/2) = —x(t) iff Xy = 0, for k even

Another property, known as Parseval’s theorem, is that the mean power in one period of x(t) is
equal to the sum of the powers of the Fourier components:

et [Mawra= 3 x, (1.4.12)
xr — 0 — k e B

where | X| denotes the magnitude of X.

1.A.2 Sampling theorem and interpolation formula for periodic
signals

In this section, we derive the Nyquist sampling theorem in the special case of periodic signals.
This case is particularly simple because a bandlimited periodic signal is completely characterized
by a finite number of Fourier series coefficient. On this other hand, the periodicity assumption is
not as restrictive as it seems because any finite-duration signal can be considered as one period
of a periodic signal. The derivation makes use of the Fourier series intriduces in Section 1.A.1.

12
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1.A.2.1 Discrete Fourier series

Let x(t) be a periodic signal that contains no frequency components at and above W, and let K
be the largest integer such that K/T < W. All Fourier coefficients X} must be zero for |k| > K,
otherwise the signal would not be bandlimited to W. Therefore, z(t) can be decomposed into a

. . A .
sum of a finite number N of complex exponentials, where N = 2K 4+ 1 in the general case, and

A . . . . . .
N = 2K in the special case when the highest-frequency component X is purely cosinusoidal,

and therefore real:
[N/2]

z(t)= Y Xpel?H/T (1.A.13)

k=—[N/2]
where [N/2] denotes the integer part of N/2, i.e. (N —1)/2 if N is odd, and N/2 if N is even.
The sampling theorem for periodic signals states that z(¢) can be exactly reconstructed from N

samples at intervals of T; = T/N. In other words, the sampling frequency Fs = N/T must be
more than twice the highest frequency component K /T in the signal.

To prove this theorem, we will first show that the Fourier coefficients Xj can be computed from
N samples of z(t). The signal at any time ¢ will then be reconstructed by replacing the X} in
(1.A.13) by their expression as a function of the N samples. Figure 1.2a illustrates the relations
between the continuous-time signal z(t), the sampled signal x[n] and the Fourier coefficients Xj.

Equation (1.A.13) holds for any time ¢, including the sampling times n7T'/N:

/2]
zln] =x(nT/N)= > Xped*™/N  0<n<N-1 (1.A.14)
k=—[N/2]

This provides a set of N linear equations for the N Fourier coefficients X as a function of the

N samples z[n]*. 1 We will show presently that the solution to this set of equations is:
ap N
Xi=— x[n)eI2mkn/N 1.A.15a
=S X b (14150

where

oy — [1/2 if |k] = N/2 (requiring N even) (1.A.15b)

1 if k] < N/2

The relations (1.A.14) and (1.A.15) are called discrete Fourier series. They are the equivalent for
discrete, periodic signals of relations (1.A.10) and (1.A.11) for continuous-time signals. Note the
symmetry between (1.A.14) and (1.A.15), the only differences being the signs of the arguments
of complex exponentials and the 1/N factor in (1.A.15). These relations are the basis for the
discrete Fourier transform, which is one of the most useful tools in digital signal processing, and
will be studied in detail in Chapter 4.

xBecause the Fourier coefficients are complex, strictly speaking, one should write equations separately for the
real and imaginary parts. However, due to symmetry relations between coefficients (specifically, X_5 = X};), this
gives only N independent real equations.
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1.A.2.2 Periodic interpolation formula

We have not shown that (1.A.15) is the solution to the set of equations (1.A.14). A direct proof
is simple (it involves the orthogonality of discrete-time complex exponentials), but we will not
do it. Rather, we will assume that (1.A.15) holds, and use it to express the original signal x(t) as
a function of its samples z[n]. In the special case when t = nTj, this interpolation formula will
verify that (1.A.15) is the solution to (1.A.14). Specifically, let us replace the Fourier coefficients
X in (1.A.13) by their values as a function of the samples z[n] in (1.A.15):

/2, N-l | |
sty =Y |52 Y aln]e /N 2kt T (1.A.16)
k=—[N/2] n=0

Interchanging the order of summations over k and n, and noting that 1/N = T /T, this becomes:

N—-1
x(t) = z[n]on(t —nTy) (1.A.17)
n=0
with
Al [N/2] ‘
on(t) = + S e (1.A4.18)
k=—[N/2]

Formula (1.A.17) expresses the signal z(t) as a weighted sum of delayed interpolating functions
on(t). The weights are the samples x[n], and the delays multiples of the sampling interval nT.
A closed-form expression for ¢ (t) is easily obtained by making use of the formula for the partial
sum of a geometric series

N—-1 N
-1

S

o z—1

where z 2 e32mt/T
IN/2] D=2V i N s odd
— k _ 22—z 2
Non(®) = D e = va vyt

k=—[N/2] if N is even

1 1
2(z2—-2"2)

Replacing z by its value, and making use of the fact that /¥ — e™7% = 2jsin 6, we obtain the
final formula for the interpolating function:

sin(mNt/T) _ 1 sin(wFst) if NV is odd

/) — ' Nsin(rt/T) — N sin(nFst/N) 1.A.19
on (1) s1n(7r]1\\ffzr71“()ﬂic;sT(7)rt/T) — % sin(mFst)cotan(mFst/N) if N is even ( )

The function ¢n(t) is illustrated in Fig. 1.3 for N = 9. It is periodic with the same period
T = NT as x(t), and verifies the property

1 if n is a multiple of N

on(nT;) = {0 otherwise (1.4.20)

These properties imply that z(t) = z[n] for ¢ = nTy, thereby confirming that (1.A.15) is indeed
the solution to the set of equations (1.A.14).

14
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1.A.2.3 Aliasing of a periodic signal

We will now examine what happend when the periodic signal is no longer band-limited so that
the Nyquist criterion is not met. Specifically, suppose we take samples at frequency Fs = N/T
of the wide-bandwidth signal:

oo
2(t) 2 Y Xyl HT (1.A.21)
k=—o00
By making use of the relation (1.A.15), one can as before define N discrete Fourier coefficients
from N samples x[n]. However, we anticipate that, due to aliasing, the discrete Fourier coeffi-
cients of x[n] will no longer be the same as the coefficients X}, of the continuous-time signal z(¢),
so they will be denoted X}, —[N/2] < k < [N/2]. The relations between the continuous-time
signal x(t), the samples x[n], the continuous Fourier coefficients X and the discrete Fourier
coefficients X, is illustrated in Fig. 1.2b. To relate the Fourier coefficients of the discrete and

the continuous signals, we express the samples both as a finite sum, as in (1.A.14), and as an
infinite sum as in (1.A.21). From (1.A.14):

N2
aln)= > Xyel?mn/N (1.A4.22)
k=—[N/2]
From (1.A.21),
z[n] = 2(nT/N) = > Xjel? /N (1.A4.23)

l=—0
The infinite sum in (1.A.23) can be decomposed into finite sums over N coefficients. Specifically,
[ can be expressed uniquely in the form k+rN, where r is an integer, and —[N/2] < k < [N/2]*.
2 Eq. (1.A.23) becomes:

) [N/2] ‘
gl = Y Y Xpupyed 2NN (1.A.24)
r==00 k=—[N/2]
Interchanging the order of summations, and making use of the 27 periodicity of the complex
exponential, (1.A.24) yields:

[N/2] 0o
el =) [ > XkJrrN] eI?mhn/N (1.A.25)
k=—[N/2] Lr=—c0

Comparing (1.A.25) with (1.A.24) gives the desired relation between the Fourier coefficients of
the discrete and continuous-time signals:

Xe= Y Xisrn (1.A.26)

r=—00

That is, the k*" Fourier coefficient of the sampled signal z[n] is equal to the k" coefficient of the
original signal x(¢) plus the sum of all the aliased components that are of order k plus a multiple
of N. The relation between X, and X}, is illustrated in Fig 1.7 for different values of N. As
the number of samples decreases, the discrete Fourier coefficients X, increasingly deviate from
the continuous coefficients Xj. In the special case when Nyquist’s criterion is met, X3 = 0 for
|k| > [N/2], so that X, is equal to X}, i.e. the Fourier coefficients are not affected by aliasing.

2*For simplicity, we assume that N is odd in this derivation.
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1.A.2.4 Generalization of the interpolation formula to arbitrary signals

The interpolation formulas (1.A.17) and (1.A.19) are valid only for periodic signals. Similar
formulas can be obtained for arbitrary band-limited signals. For deriving these more general
formulas, we will let the period of the signal tend to infinity. Then, the number of samples N in
(1.A.17) must also go to infinity because, if W is the largest frequency component in the signal,
one must have N = F;T > 2WT in order to verify Nyquist’s condition. Because the signal is
assumed to be periodic, (1.A.17) can be written as:

[N/2]

w(t) =Y, alnlon(t —nTy)

n=—[N/2]

As the period tends to infinity, this formula becomes

x(t) = i z[n]p(t —nTs) (1.A.27)
with )
o) 2 Jim_on(t) = Jim 5—=EEE (1.4.28)
(1.A.29) As N becomes very large, while ¢ remains fixed, one has
N sin(nFst/N) ~ wFgt
so that s w )
mF,t o

Together, Equations (1.A.27) and (1.A.30) give the general interpolation formula (1.12).

Formula (1.A.27) holds for arbitrary band-limited signals, including periodic ones. If (1.A.17)
and (1.A.27) are to be both true for periodic signals, one must have:

on(t) = i ¢(t —rNTy) (1.A.31)

r=—00

It can be shown that this is indeed the case.
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A/D CONVERTER
x(f) x[n] xgln]
—— TRANSDUCER CONDITIONER > SAMPLER [ QUANTIZER -
Figure 1.1:
Fs > 2W Fs < 2W
(1-3) 1.3
x(t), 0<t<T — x[n], Ogn<N X(t), O<t<T __u.... x[n], Osn<N
21) A A
(1.15) (1.14)
(1.19) (1.18) (1.15) (1.14) (1.19) (1.18)
Y Y
o -Ni2<keN/2 X, ~eockem_ 130 % X, Ni2<k<N/2

Figure 1.2: A. Relation between the continuous time signal x(t), the sampled signal z[n| and
the Fourier coefficients X when Fj is above Nyquist’s rate. Numbers refer to formulas in the
text. B. Same as A. when F, is below Nyquist’s rate. X}, refers to the Fourier coefficients of the
sampled signal which now differ from those of x(t).
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987654321061 235 %567 89

Figure 1.3: The periodic interpolating function ¢y (t) for N =9 and Fy = 1.

9 8-7265-4-3-2-101 2 5 4526 7 8 9

Figure 1.4: The general interpolating function ¢(t) for the same sampling frequency as in Fig
1.2.
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Figure 1.5: Aliasing: Two sinewaves with different frequencies that have the same samples.

Figure 1.6: A two-component signal whose samples are identically zero due to aliasing of the
high-frequency component.
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Figure 1.7: Effects of sampling at 4 different frequencies on the spectrum of a periodic signal
of the continuous-time signal.

with 39 components. Crosses show the Fourier coefficients of the sampled signal, circles those
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Figure 1.8: Input-output function for a 4-bit quantizer.
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AND DIGITAL FILTERING

ANALOG
DIGITAL
—>| LOWPASS > ADC / DECIMATE
> LOWPASS L —
FILTER | / FILTER | 7 BY K

bass™ 2 T

DATA RATE = Kf, DATA RATE = f
fotop =K 1y /2 "" )

K = OVERSAMPLING RATIO (INTEGER)
/—memu. FILTER '
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Courtesy of Analog Devices. Used with permission.

Figure 1.9: (from Analog Devices) Block diagrams of conventional and oversampling A/D sys-
tems.
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ot Courtesy of Analog Devices. Used with permission.
Figure 1.10: (from Analog Devices) Block diagram of sigma-delta modulation A/D system.
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Courtesy of Analog Devices. Used with permission.

Figure 1.11: (from Analog Devices) Input and output signals for 1-bit sigma-delta modulator.
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Courtesy of Analog Devices. Used with permission.

Figure 1.12: (from Analog Devices) Linear-system model for sigma-delta modulator.
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Figure 1.13: (from Analog Devices) Spectrum of quantization noise with and without noise

shaping.
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Figure 1.14: Sampling of an analog sine wave, Fy = 5F
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Figure 1.15: Sampling of a bandlimited signal, Fy = 2W
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