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Chapter 10 - A PROBABILITY PRIMER 
CDFs, PMFs, PDFs, Expectation and all that... 

�c J.W. Fisher 2007 

10 Introduction 

In many experiments there is some element of randomness that we are unable to explain. Proba­
bility and statistics are mathematical tools for reasoning in the face of such uncertainty. Here, we 
are primarily interested in the use of probability for decision making, estimation, and cost min­
imization. Probabilistic models allow us to address such issues quantitatively. For example; “Is 
the signal present or not?” Binary : YES or NO, “How certain am I?” Continuous : Degree of 
confidence. Here we introduce some very basic notions of probability and random variables and 
their associated cumulative distribution functions (CDF), probability mass functions (PMF), and 
probability density functions (PDF). From these we can define the notion of expectation, marginal­
ization, and conditioning. This description is meant to be concise, limiting the discussion to those 
concepts which can be applied to decision problems we encounter in biomedical signal and image 
processing1. 

10.1 Sample Spaces and Events 

Basic probability can be derived from set theory where one considers a sample space, associated 
events, and a probabilty law. The sample space, denoted Ω, is the exhaustive set of finest grain 
outcomes of an experiment. An event is a subset of the sample space. A probability law, denoted 
P , assigns numerical values to events. While the sample space may be continuous or discrete, we 
restrict the following discussion to discrete (countable) sets in order introduce basic probability 
concepts. 

Examples of sample spaces are: 

• the set of outcomes of rolling a 6-sided die, 

• the set of outcomes of rolling a 6 sided die AND flipping a coin, 

• the set of outcomes when drawing 3 (or 4) cards from 47 

Examples of events for the above sample spaces are: 

• the roll of the die is greater than 4, 
1more accurately, we consider concepts which can be applied to a limited, but useful class of decision problems. 
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• the flip of the coin is heads AND the roll of the die is odd, 

• the draw of 3 (or 4) cards contains at least one 2 (or one King). 

Events A and B are mutually exclusive events if observing one precludes observing the other 
(equivalent to A ∩ B = ∅). The probability of an event, denoted P {A} or P {B} is the number 
of times we expect to observe the event relative to the number of trials. Letting N be the number 
of experimental trials and NA, NB be the respective number of times events A and B are observed 
within N trials. The frequentist (empirical, Laplace) approach defines probabilities in terms of a 
limit over infinite trials (i.e. as N → ∞) while the axiomatic (Kolmogorov, Bayesian) approach 
defines probabilities in terms of axioms (from which all other probabilistic properties can be de­
rived). While the frequentist approach agrees with our intuition, the axiomatic approach constitutes 
the modern view of probability. 

Empirical Definition 

NA
P {A} = lim 

N →∞ � 
N � 
NB

P {B} = lim 
N →∞ � 

N � 
NA + NB

P {A ∪ B} = lim 
N →∞ N 

Axiomatic Definition 

0 ≤ P {A} , P {B} ≤ 1 

P {Ω} = 1 

if A ∩ B = ∅ 

P {A ∪ B} = P {A} + P {B} 

Note that A ∩ B and AB are both used to signify the event “A and B”, while A ∪ B and A + B 
are both used to signify the event “A or B”. 

10.1.1 Uniform Sample Spaces (Discrete Case) 

If the elements of the sample space are equally likely (which is the case for all of the examples 
above), then probabilities are computed as follows. 

1. N = the number of experimental outcomes. 

2. NA = the number of experimental outcomes which satsify the event of interest A. 

3. P (A) = N
N 

A . 

Many probability questions simply come down to your ability to count, although counting is not 
always a straightforward process as discussed next. 
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10.2 Counting:Permutations and Sampling 

Permutations and sampling schemes are useful for computing probabilities of events which are 
defined as sets of from the sample space where all elements of the sample space have equal proba­
bility. 

10.2.1 Permutations 

A permutation is a rearrangement of k distinct items. The total number of such rearrangements is 
denoted by k! and computed as 

k

k! = i where 0! � 1 (1) 
i=1 

10.2.2 Sampling without replacement 

Sampling without replacement is the process of repeatedly drawing items from a set of distinct 
items without replacing previous selections. The total number of different draws of k distinct items 
from a set of N items can broken down into two cases: draws where the order of the items does 
not matter and draws in which it does. If order matters, the sets {a, c, d, f, g} and {c, a, f, g, d} are 
considered to be different draws. If order does not matter then they are considered to be the same 
draw. The total number of possible draws can be computed as: 

N !
order matters: (2)

(N − k)! 
N ! N

order does not matter: = (3)
(N − k)!k! k 

Notice that when order does not matter we simply reduce the total number of draws by the number 
of ways any single draw can be rearranged (i.e. the number of permutations). The notation N

k 
denotes the function “N choose k” which has the following property: 

N N 
= 

k N − k 

so that the total number of draws of k items from a set of N is equal to the total number of draws 
of N − k items when order does not matter. 

10.2.3 Sampling with replacement 

When sampling with replacement, we (not surprisingly) replace our selection back into the set of 
items before redrawing an item. In this case, the selection of k items may contain repeated elements 
which slightly complicates cases when order does not matter. This is because we cannot simply 

 

Cite as: J.W. Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing,
Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY]. 

3



� � 

divide by the number of ways k items can be permuted since this would include permutations in 
which identical items switch positions. The total number of possible draws can be computed as: 

order matters: Nk (4) 

order does not matter: 
(N + k − 1)! 

= 
N + k − 1 

(5)
(N − 1)!k! k 

10.2.4 Conditional Probability 

In decision making (and estimation) we are interested in how the observation of one event changes 
the probability of observing another event. This is denoted P (A|B), the probability of event A 
given B has occurred or conversely P (B|A), the probability of event B given A has occurred. 
This probabilistic relationship can be derived from Venn diagrams and has the form: 

P (AB)
P (A|B) = 

P (B) 
(6) 

P (AB)
P (B|A) = 

P (A) 
. (7) 

so that it is the probability of jointly observing events “A” and “B” divided by the marginal proba­
bility of the conditioning event. 

10.2.5 Statistical Independence 

Two events A and B are statistically independent if observing one does not alter the probability 
of observing the other. If both events have nonzero probability, this is equivalent to their joint 
probability being the product of their marginal probabilities. That is, if A and B are statistically 
independent events then 

P (A|B) = P (A) (8)

P (B|A) = P (B) (9)

P (AB) = P (A) P (B) ; if P (A) > 0, P (B) > 0 (10)


10.2.6 Baye’s Theorem 

From the definitions of conditional probability we see that the joint probability, that is the probabil­
ity of A and B can be written as a product of a conditional probability and a marginal probability 

P (AB) = P (A|B) P (B) 

= P (B|A) P (A) . 
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From this relationship we can easily derive the well known Bayes’ rule


P (A B) = 
P (B|A) P (A)

= 
P (AB) 

(11)|
P (B) P (B) 

P (B A) = 
P (A|B) P (B)

= 
P (AB) 

. (12)|
P (A) P (A) 

Bayes’ rule plays a prominent role in many statistical estimation and decision making problems. 

10.3 Probability Redux:Venn Diagrams 

The previous concepts including sample and event spaces, conditional probabilities, and Bayes’ 
rule can be captured conceptually via Venn diagrams. In particular, conditional probability is 
easily derived using such diagrams. See the sequence of powerpoint slides on this point. 

10.4 Random Variables 

So far we have discussed ways in which to compute probabilities of events and how to manipulate 
joint and marginal probabilities in order to compute conditional probabilities. However, keeping 
track of different events and their probabilistic relationships is a bit cumbersome. The notion 
of a random variable simplifies this somewhat. There are two types of scalar random variables; 
discrete and continuous with which we associate a function enabling us to compute probabilities 
of specific events. In the case of discrete random variables the argument of the function is an index 
(or indices in the multi-dimensional case) while in the continuous random variable the argument 
of the function is a continuous value (or values in the multi-dimensional case). When we discuss 
multi-dimensional random variables we can define random vectors which are comprised of both 
discrete and continous random variables. 

10.4.1 Discrete Random Variables (Probability Mass Functions) 

The functions which describes a discrete random variable is a probability mass function (PMF). 
Experimental outcomes are divided into a set of mutually exclusive events. Associated with each 
event is a probability (a value between 0 and 1). The sum over all probabilities is unity. 

If {A1, . . . , AN } is a set of N mutually exclusive events which enumerates all possible events then 
the PMF is an indexed table which satisfies the following 

Pi = P (Ai) 

Pi 0≥
N

Pi = 1 
i=1 
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10.4.2 Continuous Random Variables (Probability Density Functions) 

If the random variable takes on continuous values then defining probabilities and events requires 
some care. By way of example, suppose a random variable can take on values between 0 and 
T with all values being equally likely. One approach to defining probability on the continuum 
would be to extend the notion of PMFs by defining intervals with finer and finer discretizations by 
dividing the range of the variable into discrete intervals of width Δ and assign a probabilty of 

Δ to
T 

each. This results in a PMF with equal probability of a sample falling into any interval. In order to 
consider a continuum of events we could take a limit as Δ grows arbitrarily small to compute the 
probability that the random variable X = t where 0 ≤ t ≤ T . 

Δ Δ 
P (X = t) = 

Δ
lim 

0 
P t − 

2 
< X ≤ t +

2→ � � 
Δ 

= lim 
Δ 0 T→

= 0 

As we see, this approach converges to zero probability in the limit. While this result for continuum 
turns out to be correct (i.e. the probability of observing a given value of a continuous random 
variable is technically zero), it is not useful for describing random variables on the continuum. 
Alternatively, we can define a specific type of event, not disimilar to the discretization above, in a 
way that allows the computation of the probability of any event defined on the continuum. Namely, 
the probability that the random variable X will take a on value less than or equal to x. 

PX (x) = Pr {X ≤ x} (13) 
1 − PX (x) = Pr {X > x} (14) 

PX (x) is what is known as the cumulative distribution function (CDF) of a random variable and 
has the following properties 

PX (−∞) = 0 

PX (∞) = 1 

0 ≤ PX (x) ≤ 1 

PX (x + Δ) ≥ PX (x) ; Δ ≥ 0 

From it we can derive the probability density function (PDF) of a continuous random variable 
x 

PX (x) = pX (u) du (15) 
−∞ 

∂ 
pX (x) = PX (x) (16)

∂x 

which has the following properties 

� 
pX (x) ≥ 0 

∞ 

pX (u) du = 1 
−∞ 
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The PDF and related CDF (one can be derived from the other) allow us to compute the probability

of any event that is defined as a sample of the continuous random variable falling in an interval.

As an example, if we wish to compute P (a < X ≤ b) then we simply integrate the PDF over the

appropriate region � b 

P (a < X ≤ b) = 
a 

pX (u) du 

= PX (b) − PX (a) 

If the event invovles multiple disconnected regions, we simply integrate over each region and add 
the results 

N � 
P (X ∈ {R1, · · · , RN }) = pX (u) du 

i=1 Ri 

10.4.3 Expectation 

Given a function of a random variable (i.e. g(X)) we define it’s expected value as: ⎧ �N⎨ i=1 g(xi)pX (xi) ; X discrete 
E {g(X)} = (17)⎩ � ∞ 

g(u)pX (u) du ; X continuous −∞ 

Example functions include


g(X) symbol statistic

X µx mean


(X − µx)
2 σ2 variance
x


(X − µx)
n νn nth central moment


− log (pX (X)) H(X) entropy


Expectation is linear 

E {αf(x) + βg(x)} = αE {f(x)} + βE {g(x)} (18) 

Expectation is with regard to ALL random variables within the arguments. This is important for 
multi-dimensional and joint random variables. 

10.5 Multi-Dimensional Random Vectors 

We can define joint probability density and cumulative distribution functions over multiple random 
variables in a similar fashion as we did for a single random variable. A collection of multiple 
random variables is known as a random vector. For a two dimensional random vector we define 
the probability of the event {X1 ≤ x1 AND X2 ≤ x2} as a function of x1 and x2. The joint density 

7
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is the function we integrate to compute the probability of this event. 

(x1, x2) = Pr {X1 ≤ x1 AND X2 ≤ x2} (19)PX1X2 � � x1 x2 

= pX1X2 (u1, u2) du2du1 (20) 
−∞ −∞ 

∂2 

pX1X2 (x1, x2) = PX1X2 (x1, x2) (21)
∂x1∂x2 

Similarly, we can define a N -dimensional joint density and cumulative distribution function over 
N variables. 

P (x1, . . . , xN ) = Pr {X1 ≤ x1 AND X2 ≤ x2� x1 
� xN 

. . . AND XN ≤ xN } (22) 

= . . . p (u1, . . . , uN ) duN . . . dx2du1 (23) 

p (x1, . . . , xN ) = 

−∞ 

∂N 
−∞ 

P (x1, . . . , xN ) (24)
∂x1 . . . ∂xN 

10.5.1 Marginal Densities and Mass Functions 

Given 2 random variables X1 and X2 and associated CDF P (x1, x2) and PDF p(x1, x2) (or PMF), 
the PDF (or PMF) over just one of the variables is referred to as the marginal distribution or 
density over that variable. The marginal PDF of X1 is computed by integrating the joint PDF of 
X1 and X2 over x2 

∞ 

p(x1) = p(x1, x2)dx2 (25) 
−∞ 

Note that if X2 were a discrete random variable, then we would sum over all the possible values 
of X2 rather than integrate. The marginal density of X2 is computing similarly by integrating (or 
summing) over x1. A similar form is used for the multidimensional case. For example, given 
a joint density over four variables p (x1, x2, x3, x4) if we wish to compute the marginal density 
p (x2, x4) we integrate the joint density over the remaining variables as: 

∞ ∞ 

p(x2, x4) = p(x1, x2, x3, x4)dx1dx3 
−∞ −∞ 

We can derive the formula above by recalling that the PDF of a random variable is defined as 
the derivative of the CDF which in turn defines the probability of a specific event over that vari­
able. The equivalent definition for joint random variables (where we have reinstated subscripts for 
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clarity) is derived as


∂ 
pX1 (x1) = PX1 (x1)

∂x1


∂

= (Pr {X1 ≤ x1})

∂x1


∂

= (Pr {X1 ≤ x1 AND X2 equal to anything})

∂x1


∂

= 

∂x1 
(Pr {X1 ≤ x1 AND −∞ ≤ X2 ≤ ∞}) 

∂ x1 ∞ 

= pX1,X2 (u1, x2)dx2du1
∂x1� −∞ −∞
∞ 

= pX1,X2 (x1, x2)dx2 
−∞ 

By similar reasoning, one can derive the marginal density of a subset of variables of an N -
dimensional random vector. Again, for component of the random vector 

10.5.2 Conditional Densities 

In the case of two random variables we are interested in the resulting density when we condition 
one variable on another. This is especially useful for inference and estimation problems. For the 
two dimensional case this density has the form 

p (x1, x2) 
p (x1|x2) = (26) 

p (x2) 

= � 
p (x1, x2) (27)∞ 
p (x1, x2) dx1−∞ 

More generally in the multi-dimensional case the conditional density is the ratio of the joint density 
to the marginal density of the conditioning variables. For example, given a joint density over four 
variables p (x1, x2, x3, x4) if we wish to compute the conditional density p (x2, x4|x1, x3) we form 
the ratio of the joint density to the marginal of the conditioning variables as: 

p (x1, x2, x3, x4) 
p (x2, x4|x1, x3) = 

p (x1, x3) 
p (x1, x2, x3, x4) 

∞ ∞ 
p (x1, x2, x3, x4) dx2dx4−∞ −∞ 

From the two examples above we see that the joint can always be expressed as product of a condi­
tional density and the marginal of the conditioning variables. 

p (x1, x2) = p (x1) p (x2|x1) (28) 
= p (x2) p (x1|x2) (29) 

p (x1, x2, x3, x4) = p (x1, x3) p (x2, x4|x1, x3) 
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10.5.3 Bayes’ Rule 

Examining the relationship between joint and conditional densities results in Bayes’ rule as applied 
to densities. Noting that 

p (x1) p (x2|x1) = p (x2) p (x1|x2) 

results in what is also known as Bayes’ rule 

p (x2|x1) = 
p (x2

p 
) p 
(x

(

1

x

) 
1|x2) (30) 

p (x1|x2) = 
p (x1

p 
) p 
(x

(

2

x

) 
2|x1) (31) 

10.5.4 Independent Random Variables 

Two random variables X1 and X2 are statistically independent if their joint density can be ex­
pressed as a product of their marginal densities 

p(x1, x2) = p(x1)p(x2) 

More generally for the elements of a random vector are statistically independent if they can be 
expressed in the form 

N

p(x1, . . . , xN ) = p(xi) (32) 
i=1 

This is a stronger statement of statistical independence as it implies that the random variables are 
statistically independent over all events. 

10.5.5 Expectation 

Expectation over random vectors is defined in the same way as for the scalar case. That is 
∞ ∞ 

E {g (x1, , xN )} = g (x1, , xN ) p (x1, dxN (33)· · · · · · · · · · · · , xN ) dx1 · · · 
−∞ −∞ 

It is important to remember that unless otherwise specified, expectation is taken with regard to 
every random variable within the brackets. As in the scalar case, expectation over random vectors 
is linear in the following sense 

E {αf (x1) + βg (x2) + γh (x1, x2)} = αE {f (x1)} + βE {g (x2)} + γE {h (x1, x2)} (34) 

The derivation follows 
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∞ ∞ � 
E {αf (x1) + βg (x1) + γh (x1, x2)} = αf (x1) + βg (x1) 

−∞ −∞ � 
+γh (x1, x2) pX1X2 (x1, x2) dx1dx2 

∞ ∞ 

= αf (x1)pX1 (x1) pX2|X1 (x2|x1) dx2 dx1 + 
−∞ �−∞ �� � � � 1 
∞ ∞ 

βg (x2)pX2 (x2) pX1|X2 (x1|x2) dx1 dx2 + 
−∞ �−∞ �� � � � 1 
∞ ∞ 

γh (x1, x2) pX1X2 (x1, x2) dx1dx2 
−∞� −∞ �∞ ∞ 

= α f (x1)pX1 (x1) dx1 + β g (x2)pX2 (x2) dx2 + �−∞ � −∞
∞ ∞ 

γ h (x1, x2) pX1X2 (x1, x2) dx1dx2 
−∞ −∞ 

= αE {f (x1)} + βE {g (x1)} + γE {h (x1, x2)} 
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