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HST-582J/6.555J/16.456J - Biological Signal and Image Processing - Spring 2007

Problem Set 5
Due April 26, 2007

Problem 1

Decision Boundaries: Two-dimensional Gaussian Case

The optimal Bayesian decision rule can be written:
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The decision boundary is defined as the locus of points, x, where the ratios are equal,
that is
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If x = [x1, x2] is a two-dimensional Gaussian variable, its PDF is written:
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where mi, Σi are the class-conditional means and covariances, respectively. Plugging this
into the log form of the decision boundary above yields:
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Suggestion: You may want to do part (d) of this problem first as a way of
checking your answers to the first three parts although it is not necessary to do
so.
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express the decision boundary in the form x2 = f (x1).
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b) If we keep all values from part (a), but set
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)
how does the decision boundary change in terms of its relationship to m1 and m0?
Express the decision boundary in the form x2 = f (x1) using the new value of the
ratio of P0 to P1 and the means and covariances from part (a).

c) Suppose now that
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where |r| < 1 (which is simply a constraint to ensure Σi is a valid covariance matrix)
keeping all other relevant terms from part (a). How does this change the decision
boundary as compared to the result of part (a)?
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setting all other parameters, except P1 and P0, the same as in part (a). Use matlab
contour function to plot the decision boundary as a function of the ratio of prior
probabilities of each class for the values P0/P1 = [1/4, 1/2, 1, 2, 4]. Here is some of
the code you will need (where “function” is the left side of the decision boundary
equation, ln (p1 (x)) − ln (p0 (x))):

[x1,x2] = meshgrid(-4:0.1:4,-4:0.1:4);

d = function(x1,x2);

[c,h] = contour(x1,x2,d,log([1/4,1/2,1,2,4]));

clabel(c,h);
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Problem 2

Suggestion: read the entire question, the answer can be stated in one sentence
with no calculations.

Suppose you have a 3-dimensional measurement vector x = [x1, x2, x3] for a binary classifi-
cation problem where 0 < P1 < 1 (i.e. it is strictly greater then 0 and less then 1). Recall
that the class-conditional marginal distribution of x1, x2 is

pi (x1, x2) =

∫
pi (x1, x2, x3) dx3

=

∫
pi (x1, x2|x3) pi (x3) dx3

and that the unconditioned marginal density of any single measurement is

p (xk) =
∑1

Pipi (xk)
i=0

where k = 1, 2, or 3.

Now consider 2 different decision functions. The first φ (x1, x2, x3) is the optimal classifier
using the full measurement vector [x1, x2, x3], while the second ϕ (x1, x2) is the optimal
classifier using only [x1, x2]. In general the probability of error using φ (x1, x2, x3) will be
lower then when using ϕ (x1, x2) (i.e. when we ignore the third measurement). State a
condition under which both classifiers will achieve the same probability of error.
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