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Pharmacokinetics and Scale-Up
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Anti-angiogenic therapy

Chemotherapy or radiation therapy

?

Paradox
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Normalization Hypothesis

Normal Abnormal

Normalized Inadequate
(Tumor begins to die/decrease)

Figure by MIT OCW. After Jain, 2001.
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ProAnti

Can Anti-Angiogenic Therapy Normalize Tumor Vessels?

Reference:  Jain, Nature Med. (2001), Science (2005)
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Tumor relapse after 
regression

Courtesy of National Academy of Sciences, U.S.A. Used with permission.��
Source: Jain, Rakesh K., Nina Safabakhsh, Axel Sckell, Yi Chen, Ping Jiang, Laura Benjamin, Fan Yuan, and Eli Keshet, "Endothelial cell death, angiogenesis, and 
microvascular function after castration in an androgen-dependent tumor: Role of vascular endothelial growth factor." Proc Natl Acad Sci 95 (1998): 10820-10825. (c) National Academy 
of Sciences, U.S.A.
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Normalization of tumor vasculature 
by hormone withdrawal
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microvascular function after castration in an androgen-dependent tumor: Role of vascular endothelial growth factor." Proc Natl Acad Sci 95 (1998): 10820-10825. (c) National Academy 
of Sciences, U.S.A.
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Can Herceptin normalize tumor vessels?

VEGF

Treatment

in vitro
C         H

in vivo
C         H

Images removed for copyright reasons.

 See: Fig. 1a in  Izumi, Y., L. Xu, E. di Tomaso, D. Fukumura, and R. K. Jain. "Tumour biology: herceptin acts as an anti-angiogenic 
cocktail." Nature 416 (2002): 279-280.

MDA361HK MDA361HK 
tumortumor

0

5

10

15

 V
as

cu
la

r p
er

m
ea

bi
lit

y
   

   
  (

10
-7

cm
/s

ec
)

day 0 day 15 Max size

*
*

l  Control l  Herceptin



2005

16

Day 0 - Abnormal

Day 2 – Normalized

Normal

Day 5 - Inadequate

Normalization 
Hypothesis

 
 

VEGF Blockade Normalizes Tumor Vasculature

Figure by MIT OCW. After Jain, 2001.
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Tong et al. Cancer Research (2004)

DC101 fortifies tumor vessels

Normal arteriole control DC101

Reference:
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Decrease in interstitial fluid 
pressure (IFP) by VEGF blockade

Courtesy of National Academy of Sciences, U.S.A. Used with permission.
 Source: Jain, Rakesh K., Nina Safabakhsh, Axel Sckell, Yi Chen, Ping Jiang, Laura Benjamin, Fan Yuan, and Eli Keshet, "Endothelial cell death, angiogenesis, and 

microvascular function after castration in an androgen-dependent tumor: Role of vascular endothelial growth factor." Proc Natl Acad Sci 95 (1998): 10820-10825. 
(c) National Academy of Sciences, U.S.A.



2005

19

Normalization Hypothesis

Figure by MIT OCW. After Jain, 2001.

Normal Abnormal

Normalized Inadequate
(Tumor begins to die/decrease)
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Protocol of Clinical Trial
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Response to anti-VEGF treatment 
in colorectal cancer

Endoscopic view

Before treatment 12 days post 
Avastin infusion

7 weeks post 
treatment

Ulce
r

Surgical
specimen

Willett et al. Nature Medicine (2004)Reference:
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Endoscopic IFP Measurements

Willett et al. Nature Medicine (2004) low dose high doseReference:
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Tumor vascular parameters from histology

Willett et al. Nature Medicine (2004)Reference:
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Pre-Tx Pre-SurgeryDay 12

Sagittal PET scans: Patient #1

PET Scan: Tumor FDG Uptake

Willett et al. Nature Medicine (2004)
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Cranial Model – Orthotopic Tumor Model

Figure by MIT OCW. After Jain.
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Mechanism of Vascular Normalization
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Inhibition of Ang-1/Tie2 Signalling Prevents 
Pericyte Recruitment to Tumor Vessels

rat IgG + 〈Tie2 AB

DC101 + 〈Tie2 AB

Image removed for copyright reasons.  
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Source: Fig. 2a in Winkler et al. 
"Kinetics of vascular normalization by

 
VEGFR2 blockade governs brain tumor
response to radiation: Role of 
oxygenation, angiopoietin-1, and matrix
metalloproteinases." Cancer Cell 6 
(2004): 553-563.�

�

Source: see above.
 



2005

30

The thickened basement membrane (BM) of tumor 
vessels normalizes after VEGFR2 blockade
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Images removed for copyright reasons.
Source: Fig. 4a in Winkler, et al. "Kinetics of vascular normalization by
 VEGFR2 blockade governs brain tumor response to radiation: Role of 
oxygenation, angiopoietin-1, and matrix metalloproteinases." 
Cancer Cell 6 (2004): 553-563.

Images removed for copyright reasons.
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BM thickening is common in human GBMs

Images removed for copyright reasons. 
 Source: Fig. 4b in Winkler et al. "Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: 
 Role of oxygenation, angiopoietin-1, and matrix metalloproteinases." Cancer Cell 6 (2004): 553-563.



Images removed for copyright reasons.
Source: Fig. 5a in Winkler et al. "Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor
 response to radiation: Role of oxygenation, angiopoietin-1, and matrix metalloproteinases." Cancer Cell 6 (2004): 553-563.

Figure by MIT OCW.



2005

33

The Vascular Normalization Time Window
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DC101 Decreases Tumor Hypoxia During the 
Vascular Normalization Time Window
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Source: Fig. 1b in Winkler et al. "Kinetics of 
vascular normalization by VEGFR2 blockade 
governs brain tumor response to radiation: 
Role of oxygenation, angiopoietin-1, and 
matrix metalloproteinases." Cancer Cell 6 
(2004): 553-563.

Images removed for copyright resons.
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Radiation Therapy Acts Synergistically with VEGFR2 
Blockade During the Normalization Time Window
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The Vascular Normalization Time Window
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Tumor vasculature

Reference: Brown  et al. Nature Medicine, 2001
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Normal vasculature

Reference: Brown  et al. Nature Medicine, 2001
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Pre-clinical and clinical data 

Effects of anti-angiogenic therapy

Pre-clinical data Clinical data

Blood volume

Vascular density

Permeability

PS product

Interstitial fluid pressure

Perivascular cell coverage

Apoptosis

Plasma VEGF level

Progenitor cells

(21%)

(-72%) (-26%)

(-19%)

(-62%)

(-47%)

- (no changes)

(-49%) (-71%)

(80%)

(~-92%)† (~-9%)

(190%) (112%)

* (1109%)
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Evidence from Other Labs Supporting 
Vascular Normalization

A.4.6.1 VEGF CPT-11
•Decreased vascular density
•Increased intratumoral CPT-11 conc.
•Increased tumor perfusion (Hoechst 33342)

Wilders et al. 2003

Thalidomide Inhibits bFGF
and VEGF

X-ray •Induced tumor reoxygenation
•Lower IFP
•Increased perfusion
•Radiosensitization within a time window 

Ansiaux et al. 2005

Bevacizumab VEGF SS1P and HA22
(immunotoxins)

•Combination treatment
(additive anti-tumor activity)

Bang et al. 2005

AG013736
VEGF-Trap

VEGFRs
VEGF

N/A •Decreased vascular density
•Decreased endothelial fenestrations
•Improved perivascular cell coverage

Inai et al. 2004

DC101 VEGFR2 N/A •Decreased vascular density
•Increased perivascular cell coverage
•Improved basement membrane coverage
•Down-regulation of MMP9 and MMP13

Vosseler et al. 2005

SU11657 VEGFRs
PDGFRs

Pemetrexed and
radiation

•Decreased vascular density
•Lower IFP
•Radiation therapy given after SU11657
is more effective

Huber et al. 2005

Anti-angiogenic 
agent

Target/
action Other therapies Effects Reference
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Proposed Normalization Window
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Problems with anti-cancer treatments

Physiological barriers impede
drug delivery

Genetic & epigenetic mechanisms   
lead to drug resistance

Anti-angiogenic  therapy has the 
potential to:

• overcome physiological 
and drug resistance

• normalize tumor vasculature

Courtesy of Lance Munn. Used with permission.
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“ Much of the history of biology can be 

expressed metaphorically as a dynamic 

tension between unit and aggregate, 

between reduction and holism. An 

equilibrium in this tension is neither 

possible nor desirable… In tandem the two 

kinds of endeavors nudge the discipline 

forward.”

-Edward O. Wilson
Pelegrino University Professor, Harvard
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