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Outline

How do molecules extravasate?

 What is the vascular permeability of tumors?
— Qualitative Studies
— Quantitative Studies

« What is the pore cut-off size in tumor vessels?

 Does the pore size (permeability) depend on the host-
microenvironment?

— s.C. Vs. brain vs. liver
— Correlation with angiogenesis
— Correlation with VEGF/VPF
 Does vascular permeability change with growth and regression?
— Anti-VEGF antibody
— Hormone withdrawal

* How can we explain extravasation of ~100 - 1,000 nm particles from
tumor vessels?

— Inter-endothelial junctions?
* Molecular regulation of vessel permeability and maturation
— Role of mural cells
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How Do Molecules Extravasate?
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How Do Molecules Extravasate?

Diffusion = PS (C, — C))

P = Vascular permeability (cm/sec)
S = Surface area per unit volume (cm?/cm?3)
C,, C; = Concentrations in vascular & interstitial space (mole/cm3)

Convection=L, S [(P,~ P,) - G (T, — ;)]

L, = Hydraulic conductivity of vessel (cm*/sec-mmHg)

S = Surface area per unit volume (cm2/cm3)
P, P,= Vascular and interstitial pressures

c = osmotic reflection coefficients
= 0 (totally permeable membrane)
=1 (totally impermeable membrane)
T, T; = Vascular & interstitial osmotic pressures (mmHg)
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Microvascular Permeability
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Permeability (cm/sec)
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2005 Effect of Molecular Charge on
Microvascular Permeability in LS174T
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Permeability (10-7 cm/sec)
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Spatial Heterogeneity
in Permeability

Courtesy of the American Association for Cancer Research. Used with permission. From Yuan, F., M. Leunig, S. K. Huang,
D. A. Berk, D. Papahadjopoulos, and R. K. Jain. "Microvascular Permeability and Interstitial Penetration of Sterically Stabilized
(Stealth) Liposomes in a Human Tumor Xenograft." Cancer Research 54 (1994): 3352-3356.
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Pore Cutoff Size of LS174T
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Courtesy of the American Association for Cancer Research. Used with permission. From Yuan, F., M. Dellian, D. Fukumura,
M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain. "Vascular Permeability in a Human Tumor Xenograft: Molecular Size-

Dependence and Cut-off Size." Cancer Research 55 (1995): 3752-3756.
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How Does the Brain Microenvironment
Affect Pore Size?
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Courtesy of National Academy of Sciences, U.S.A. Used with permission.
Source: Jain, Rakesh K., Nina Safabakhsh, Axel Sckell, Yi Chen, Ping Jiang, Laura Benjamin, Fan Yuan, and Eli Keshet,
"Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: Role

18 of vascular endothelial growth factor.” Proc Natl Acad Sci 95 (1998): 10820-10825. (c) National Academy of Sciences, U.S.A.
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Courtesy of the American Association for Cancer Research. Used with permission. From Yuan, F., M. Leunig, S. K. Huang,
D. A. Berk, D. Papahadjopoulos, and R. K. Jain. "Microvascular Permeability and Interstitial Penetration of Sterically Stabilized
(Stealth) Liposomes in a Human Tumor Xenograft." Cancer Research 54 (1994): 3352-3356.
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How Does Liver Microenvironment Affect
VEGF, Angiogenesis and Permeability?
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Reference: Fukumura et al. Am. J. Pathol. (1997)
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Regression of LS174T by anti-VEGF antibody
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Reference: Yuan et al. PNAS (1996)
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Can We Reduce the Permeability of an
Established Tumor With Anti-VEGF Antibody?

LS174T in dorsal skinfold chambers
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Reference: Yuan et al. PNAS (1996)
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Tumor relapse after regression

day 36, relapse
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Courtesy of National Academy of Sciences, U.S.A. Used with permission. Source: Jain, Rakesh K., Nina Safabakhsh, Axel Sckell,

Yi Chen, Ping Jiang, Laura Benjamin, Fan Yuan, and Eli Keshet. "Endothelial cell death, angiogenesis, and microvascular function

after castration in an androgen-dependent tumor: Role of vascular endothelial growth factor.” Proc Natl Acad Sci 95 (1998):

2310820-10825. (c) National Academy of Sciences, U.S.A.
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How Can We Explain Extravasation of
~100 - 1,000 NM Particles From Tumor Vessels?

e VVO’s (~100 nm)

 Fenestrae (~100 nm)

* Interendothelial junctions (?)

Reference: Hobbs et al. PNAS (1998)
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Intercellular Openings in Tumor Vessels

Image removed for copyright reasons.
See: Fig. 8 in Hashizume, et al. "Openings Between Defective Endothelial Cells Contribute to
Tumor Vessel Leakiness." American Journal of Pathology 156 (2000): 1363-1380.
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Intercellular Openings in Tumor Vessels

Image removed for copyright reasons.
See: Fig. 9 in Hashizume, et al. "Openings Between Defective Endothelial Cells Contribute to Tumor Vessel

Leakiness." American Journal of Pathology 156 (2000): 1363-1380.



2005

How Do Fluid Molecules Extravasate?

Extravascular
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Hydraulic Conductivity (L)

Convection = LS [(P,~ P)) - & (n,~;)]

Macroscopic Methods (Tissue—isolated tumor)

L,S : ~10 - 1,000 normal tissue values

~ Glomerular Capillaries

(Sevick and Jain, Cancer Research, 1991)

Molecular Determinants

Aquaporin 1 water channel is heterogeneously expressed in
tumor cells and their vasculature.

-Depends on tumor type and location

Reference: Endo et al., Microvascular Research, (1999)
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Is There a Correlation Between Angiogenesis &
Microvascular Permeability in Solid Tumors?
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Various Molecules that may Govern Vascular Permeability

IgG superfamily
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Regulators of permeability
(O VEGF,PIGF (- Ang1, VE-cadherin

Figure by MIT OCW. After Jain and Munn, 2000.
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Summary

 Transvascular transport occurs by diffusion and convection.

 Vascular permeability and hydraulic conductivity of tumors are

high, in general (exceptions: CNS tumors).

 Vascular permeability is spatially and temporally heterogeneous in

tumors.

 Vascular permeability depends on molecular weight, charge and

configuration, as well as on tumor type and transplantation site.

 Wide inter-endothelial junctions presumably account for large

pores in tumors.

« Vascular permeability and angiogenesis do not necessarily

correlate with VEGF/VPF. Other molecules such as Ang 1/2, PIGF
and VE-cadherin are likely involved.
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Extravascular
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Interstitial Pressure

« How does one measure pressure in tumors?

Do human tumors exhibit interstitial hypertension similar to rodent tumors?
* Does pressure increase with tumor growth?

* Does pressure vary from one location to another in a tumor?

 How are the pressure gradients related to fluid movement in tumors?

« What mechanisms contribute to the interstitial hypertension in tumors?
* How does elevated pressure affect delivery of therapeutic agents?
 Can pressure be reduced using physical or pharmacological agents?

e Can pressure be used for clinical benefit?
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How Does One Measure Pressure in Tumors?
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Interstitial Pressure (mmHg)
in Human Tumor Xenografts

36

Tumor Mice Interstitial Fluid Pressure
Type Strain N MeantSD Range
HGL-9 nude 15 12.0+6.0 5.5-27.5
HGL-21 nude 16  8.0%+2.0 4.5-11.0
HP-555 nude 13  6.0%2.0 3.0-11.0
us7 nude 13  9.5%2.0 6.0-12.5
SCC-21 nude 15 6.5%3.5 3.5-9.0
FaDu nude 14  20.0%3.0 17.0-25.0
HST-26T nude 12 22.5#4.0 17.5-31.5
LS174T SCID 17  19.5%8.0 7.5-36.0

Reference: Boucher et al. Microvascular Research (1995)
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Interstitial Pressure (mmHg)
in Human Tumors

TUMOR TYPES N MEAN RANGE
Normal skin 5 04 -1.0 - 3.0
Normal breast 8 0.0 -0.5- 3.0
Head and neck carcinomas 27 19.0 1.5-79.0
Cervical carcinomas 127 20.5 -2.8-94.0
Lung carcinomas 26 9.5 1.0-27.0
Metastatic melanomas 26 18.0 0.0-60.0
Breast carcinomas 21 23.7 4.0-53.0
Brain tumors 28 4.6 -0.5 -15.0
Colorectal liver metastasis 8 21.0 6.0 - 45.0
Lymphomas 7 4.5 1.0 -125
Renal cell carcinoma 1 38.0

Reference: Boucher et al. Cancer Research (1991)

Roh et al. Cancer Research (1991)

Gutmann et al. Cancer Research (1992)

Less et al. Cancer Research (1992)

Curti et al. Cancer Research (1993)

Arbit et al. Intracranial Pressure IX, Springer - Verlag (1994)
Nathanson & Nelson, Ann. Surg. Oncol. (1994)
Boucher et al. British Journal of Cancer (1997)
Milosevic et al. Cancer Research (2001)
Padera et al. Science (2003)

Znati et al. (in preparation)
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Does Pressure Increase with Tumor Growth?

Interstitial Pressure (mmHg)

Interstitial Pressure (mmHg)

20

15

10

o ‘I—‘

Rat Mammary Carcinoma

5 -

0

Tumor Mass (g)

Head & Neck Tumors in Patients

0 30

0 2
Tumor Volume (cm?3)

Reference: Gutmann et al. Cancer Research (1992)
Boucher et al. Cancer Research (1990)
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Interstitial Fluid Pressure During Tumor Angiogenesis

Interstitial Pressure (mmHg)
© = N W b 01 O N O

No vascula - Sprout Established
rization formation circulation

Figure by MIT OCW. After Jain.
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Does Pressure Vary from One Location
to Another in a Tumor?
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Reference:
Central Pressure Jain & Baxter, Cancer Research (1988)
40 (mm Hg) Boucher et al. Cancer Research (1990)

Boucher & Jain, Cancer Research (1992)
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Possible Clinical Application of Steep Rise
in Tumor Pressure

Courtesy of Lance Munn. Used with permission.
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How Are the Pressure Gradients Related to Fluid
Movement in Tumors?

N

T

Fluid loss ~ 0.14 — 0.22 mi/h-g
~ 5—-10% of plasma flow rate
~ 0.1 um/sec

42 Reference: Butler et al. Cancer Research (1975)
Jain, Cancer Metastasis Reviews (1987)
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What Mechanisms Contribute to the
Interstitial Hypertension in Tumors?

Pulmonary Pulmonary

Arterial Capillaries Pu|\r7e¢?:ary
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Etiology of Hypertension

Capillary
-

* Net filtration rate = Lymph rate
J, = ke{ (MVP-IFP)- 6 (m, -7 )}

* Suppose lymphatics stop functioning =J, =0
IFP = MVP -6 (7, —-T;)

* Permeability is high = =, ~ w;
IFP < MVP

* Increased MVP

— Reduced arterial resistance
— Increased venous resistance

Lymphatic
Vessel
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MVP (mm Hg)

40

30
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10

IFP = MVP

10

20 30 40

IFP (mmHQg)

Reference: Boucher & Jain, Cancer Research (1992)



2005

Effect of Angiotensin |l Induced Hypertension on TIFP And
TBF In LST174T Colon Adenocarcinoma Xenografts

o

LDF (mV)
o = =
(421 o (421

160 240 320
TIME (Seconds)

46
Reference: Zlotecki et al. Cancer Research (1993)
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Necrotic
Region

Semi Necrotic
Region

Well Vascularized
Region
Reference: Jain, JNCI, (1989)
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Two Distinct Pathways for Altering
Interstitial Fluid Pressure in Tumors

 Transvascular pathway (—)

— [Time constant ~ tens of seconds]
 Interstitial pathway (=)

— [Time constant ~ thousands of seconds]

K\ —
oK
DI -

Reference: Netti et al. Cancer Research (1995)
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INFUSION PRESSURE, mmHg

How Can We Overcome the

Interstitial Fluid Pressure (IFP) Barrier?
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Reference: Netti, Baxter, Boucher, Skalak, and Jain, Cancer Research, (1995)
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Therapeutic
agent infusion

infusion cycles of — e
vasoactive agent
/ l |

/ \ ! ! \
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e NI N
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Reference: Netti et al. PNAS (1999)
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Possible Clinical Application

L i_l_l
e

Courtesy of Lance Munn. Used with permission.
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3 yr disease free survival rate

Can Interstitial Fluid Pressure Be Used as a
Predictive Marker for Radiation Therapy?

100

N=107 patients
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60
40
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<20 20 >20

Interstitial Fluid Pressure (mmHg)

Reference: Milosevic and co-workers, Cancer Research (2001)
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Can We Lower Interstitial Fluid Pressure

with Anti-Angiogenic Therapy?
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LS 174T Reference:
Lee et al. Cancer Research (2000)
Tong et al. Cancer Research (2004)
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Effect of Angiotensin |l Induced Hypertension on TIFP And
TBF In LST174T Colon Adenocarcinoma Xenografts

o

LDF (mV)
o = =
(421 o (421

160 240 320
TIME (Seconds)

46
Reference: Zlotecki et al. Cancer Research (1993)
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Summary

« Rodent and human tumors have high interstitial pressure.

 Elevated pressure is a result of lack of functional lymphatics, high
vascular permeability and vascular compression by cancer cells.

« Elevated interstitial pressure may reduce transvascular convection, lead
to fluid leakage from the tumor’s periphery into surrounding tissue, and
impair blood flow.

» Periodic modulation of microvascular pressure may enhance the delivery
of macromolecules in tumors.

« Anti-angiogenic treatment can lower interstitial pressure.

« Elevated pressure may be useful in improving tumor localization and as a
predictive marker for anti-cancer treatment.
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