HST.410J/6.021J

Lecture 4 February 15, 2007

Figure from Weiss, T. F. Cellular Biophysics, Vol. I. Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

Figure from Weiss, T. F. *Cellular Biophysics*, *Vol. I.* Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

Figures from Weiss, T. F. Cellular Biophysics, Vol. I. Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

Figure from Weiss, T. F. *Cellular Biophysics, Vol. I.* Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

Image removed due to copyright restrictions.

Illustration of a water channel in a cell membrane.

Figure from Weiss, T. F. Cellular Biophysics, Vol. I. Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

Osmosis Observations

Henri Dutrochet (early 1800s)

- · first described phenomenon and called it osmosis
- developed first osmometer: animal bladder filled with test solution, plunge into water, swells, turgid
- · pressure greater for solutions with more solute

Wilhelm Pfeffer (mid 1800s)

- · osmosis can be stopped with hydraulic pressure
- thistle tube + animal bladder (or artificial membrane by late 1800s)
 - water flows in direction to equalize sugar concentration
 - hydraulic pressure develops
 - flow stops when osmotic pressure = hydraulic pressure
- · pressure proportional to concentration of solute
- pressure increases slightly with temperature

Henricus van't Hoff (1886)

- · formulated mathematical law
- · count number of particles in volume V
- measure temperature T
- osmotic pressure = pressure produced by gas with same number of particles, same volume, and same pressure

· salts are different

Svante Arrhenius (1884)

- PhD (age 25): dissolution of salts into ions
- NaCl → Na⁺ + Cl⁻ (∴ conducts electricity)
- · count ions as separate particles
- → van' t Hoff's law works for salts as well

$$\pi(x,t) = R \ T \quad \sum_{n} C_{n}(x,t) = R \ T \ C_{\sum}(x,t)$$
 osmotic pressure [osmol/m³]

Figure from Weiss, T. F. Cellular Biophysics, Vol. I. Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

Figure from Weiss, T. F. *Cellular Biophysics, Vol. I.* Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.