# **Electricity production**

2007 Biomass 2015 2030 Other renewables Nuclear Hydro Coal 8000 12000 4000 16000 TWh World electricity generation by fuel in the Reference Scenario Image by MIT OpenCourseWare. Source: World Energy Outlook 2009



Source: World Energy Outlook 2008

# **Generation technologies**

- Hydro plants
  - · with reservoir
  - · run-of-the-river
  - pump storage
- Thermal plants
  - Nuclear
  - · Coal, oil
  - Gas
    - simple cycle
    - combined cycle
- Other plants: wind, thermo solar, photovoltaic, fuel cells, biomass, geothermal, wave & tidal power, etc.

# Why a mix of generation technologies?

- · Economic reasons
  - The uneven demand profile provides opportunities for the different technologies, since they offer different combinations of fixed & variable costs
- Strategic / political reasons
  - Fuel diversification is a reasonable strategy
- Environmental reasons
  - Generation technologies have very diverse environmental impacts





| Pros & Cons of different sources of electricity  "An energy policy for Europe", EU, January 2007 |                                                           |                        |                                                            |                                       |                            |                 |            |                           |                                                 |  |  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|------------------------------------------------------------|---------------------------------------|----------------------------|-----------------|------------|---------------------------|-------------------------------------------------|--|--|
| Energy<br>sources                                                                                | Technology<br>considered for the<br>cost estimate         | 2005 Cost<br>(€ / MWh) | Projected<br>Cost 2030<br>(€ / MWh<br>with<br>€20-30/tCO2) | GHG<br>emissions<br>(Kg<br>CO2eq/MWh) | EU-27 Import<br>dependency |                 | Efficiency | Fuel price<br>sensitivity | Proven<br>reserves<br>/<br>Annual<br>production |  |  |
|                                                                                                  |                                                           | Source IEA             |                                                            |                                       | 2005                       | 2030            |            |                           |                                                 |  |  |
| Natural gas                                                                                      | Open cycle gas turbine                                    | 45 – 70                | 55 - 85                                                    | 440                                   | 57%                        | 7% 84%          | 40%        | Very high                 | 64 vears                                        |  |  |
|                                                                                                  | CCGT (Combined<br>Cycle Gas Turbine)                      | 35 - 45                | 40 - 55                                                    | 400                                   | 3/70 8470                  |                 | 50%        | Very high                 | 04 years                                        |  |  |
| Oil                                                                                              | Diesel engine                                             | 70 - 80                | 80 - 95                                                    | 550                                   | 82%                        | 93%             | 30%        | Very high                 | 42 years                                        |  |  |
| Coal                                                                                             | PF (Pulverised Fuel<br>with flue gas<br>desulphurisation) | 30 - 40                | 45 - 60                                                    | 800                                   |                            |                 | 40-45%     | medium                    | 155 years                                       |  |  |
|                                                                                                  | CFBC (Circulating<br>fluidized bed<br>combustion)         | 35 - 45                | 50 - 65                                                    | 800                                   | 39%                        | 59%             | 40-45%     | medium                    |                                                 |  |  |
|                                                                                                  | IGCC<br>(Integrated<br>Gasification Combined<br>Cycle)    | 40 - 50                | 55 - 70                                                    | 750                                   |                            |                 | 48%        | medium                    |                                                 |  |  |
| Nuclear                                                                                          | Light water reactor                                       | 40 - 45                | 40 - 45                                                    | 15                                    | Almost<br>for urar         | 100%<br>ium ore | 33%        | 1ow                       | Reasonable reserve<br>85 years                  |  |  |
| Biomass                                                                                          | Biomass generation plant                                  | 25 - 85                | 25 - 75                                                    | 30                                    |                            |                 | 30 - 60%   | medium                    | R<br>e<br>n                                     |  |  |
| Wind                                                                                             | On shore                                                  | 35 - 175<br>35 - 110   | 28 - 170<br>28 - 80                                        | 30                                    |                            |                 | 95-98%     |                           |                                                 |  |  |
|                                                                                                  | Off shore                                                 | 50 - 170<br>60 - 150   | 50 - 150<br>40 - 120                                       | 10                                    | nil                        |                 | 95-98%     | ni1                       | e<br>W<br>a                                     |  |  |
| Hydro                                                                                            | Large                                                     | 25 - 95                | 25 - 90                                                    | 20                                    | 7                          |                 | 95-98%     |                           | b                                               |  |  |
|                                                                                                  | Small (<10MW)                                             | 45 - 90                | 40 - 80                                                    | 525                                   | 1 1                        |                 | 95-98%     |                           | i E                                             |  |  |
| Solar                                                                                            | Photovoltaic                                              | 140 - 430              | 55 -260                                                    | 100                                   | 1                          |                 | /          |                           | е 🗕                                             |  |  |







# **Combined-cycle units**

Gas turbine development led to combined-cycle units: 'steam and gas'. Such units have high (electric) efficiencies (up to 60%).

Sale of heat less important Smaller units make on-site electricity production competitive



# The electricity distribution network

1

# **Distribution**

- One can distinguish between subtransmission & true distribution networks
- Subtransmission networks cover a region & they have a some kind of meshed topology. They feed distribution networks & some large consumers
- Distribution networks must reach every single end consumer
  - Rural distribution networks have a radial topology
  - Urban distribution networks are meshed but they are operated radially

# **Storage**

C

# Main properties of electric storage technologies

| Technology                                         | Typical<br>Capacity | Response time                                     | Discharg<br>e time | Efficiency | Life time      | Developm<br>ent stage | Application                                                                                      |
|----------------------------------------------------|---------------------|---------------------------------------------------|--------------------|------------|----------------|-----------------------|--------------------------------------------------------------------------------------------------|
| Batteries                                          | 1kW –<br>50MW       |                                                   | 1 min – 3h         | 65-75%     | 2-10 years     | Premature<br>/matures | Uninterruptible<br>power supply, RE<br>fluctuation<br>reduction,<br>spinning/standing<br>reserve |
| Compressed air<br>energy systems<br>(CAES)         | 25MW –<br>2.5GW     | 15 min from<br>cold start                         | 2-24 h             | 55%        | 15-40<br>years | Mature                | Spinning/standing<br>reserve, energy<br>arbitrage                                                |
| Super magnetic<br>energy storage<br>(SMES)         | 10kW –<br>1MW       |                                                   | 5sec –<br>5min     | 95%        | ~30 years      | Premature             | Uninterruptible<br>power supply,<br>power quality                                                |
| Hydrogen Fuel<br>Cell Storage<br>System<br>(HFCSS) | 1kW –<br>10GW       | Depends on<br>a fuel cell                         | 0.01 sec-<br>days  | ~40%       | 5-10years      | Prototype             | RE fluctuation<br>reduction,<br>spinning/standing<br>reserve                                     |
| Supercapacitors                                    | < 150<br>kW         |                                                   | 1sec-1min          | 85-95%     | ~10 years      | Premature             | Uninterruptible<br>power supply,<br>power quality                                                |
| Pumped storage                                     | 20MW –<br>2GW       | 1 min<br>(if standing)<br>10 sec<br>(if spinning) | 4-10h              | 55-85%     | ~50 years      | Mature                | Spinning /<br>standing reserve,                                                                  |
| Flywheels                                          | 5kW –<br>3MW        |                                                   | 15sec-<br>15min    | 90-95%     | ~20 years      | Mature                | Power quality                                                                                    |

# **Electricity supply** comprises many activities...

11

# **Supply of electricity** Classification of the required activities

<u>Generation</u> Ordinary Generation Special Generation Ancillary services

### <u>Network</u>

Transmission Investment planning Construction Maintenance planning Maintenance Operation of transmission network Distribution Investment planning Construction Maintenance planning Maintenance Operation of distribution network

### **Transactions**

Wholesale Market Free Contracts Standardized Contracts International Exchanges Retail market Supply to qualified consumers Supply to captive consumers Complementary Activities Settlement Billing Metering

### Coordination

Operation of the Electric Power System Operation of the Organized Market

# Commercialization (retailing, supply (UK))

# Diversity of services:

- · Retailers of captive consumers
- Retailers of consumers that are qualified to choose supplier
  - and choose supplier
  - but stay with the regulated tariff (if any)
- Traders
- Brokers

13

# **System Operation**

- Coordination activity at system level: To guarantee system security while meeting the market requirements
- System Operator (SO) implements the dispatch of generation & determines the network operation, subject to prescribed technical rules
- SO applies prescribed criteria for network access & informs about estimated access conditions in the short, medium & long run

# **Market Operation** (power exchange, PEX)

- PEX facilitates transactions among agents in an organized market
  - In principle, this is a non regulated activity
- Typically: management of day ahead transactions
  - Hourly (typically) matching of purchasing & selling bids for the next day
- · Also: management of other markets
  - Shorter term: intra-daily markets, regulation market, etc.
  - Longer term: future contracts, forward contracts
- Economic settlement of transactions

15

# **Service quality**

# Different dimensions of quality of service

- · Technical quality of the product
  - Continuity of supply
  - Technical characteristics of the waveform
    - Over-voltages, harmonics, mini-interruptions, flicker
- · Commercial quality of service
  - Connection / disconnection time, response to queries, metering, general attention to customers, other services



# Quality of service at wholesale level

- Metric 1: Non served energy (NSE)
  - Annual non served demand (MWh) in the entire system because of service interruptions (longer than 1 minute) at wholesale (i.e. transmission network) level

Typical reference value that has been used in centralized generation expansion planning: 1day equivalent of non-served demand/10 years

- Metric 2: Average interruption time
  - This is the NSE divided by the average power (MW) supplied by the system, and it is expressed in minutes

 $TIM = 8760 \times 60 \times NSE / E$ 

E = annual supplied system demand (MWh)

Typical reference value could be 15 m/year (e.g. Spain)

19

# **Quality of service of the transmission network**

 The unavailability of a network can be measured by the total amount of time that its lines, transformers & control devices have not been available during the year.

Computation of the Unavailability Index (UI) (a component of the remuneration of transmission may be related to this index):

$$UI = \sum_{i=1}^{n} t_{i} \cdot PN_{i}$$

$$T \sum_{i=1}^{n} PN_{i}$$
100 Reference value = 3%

ti= Unavailable time for the ith component (line, transformer or control device) (hours)

n= Total number of lines, transformers and control devices in the transmission network

T= Duration of the considered time period (hours)

PNi= Rated capacity (MW) of the lines, transformers and control devices

# Environmental implications of electricity supply & consumption

References: For instance see J.W. Tester et al. "Sustainable energy. Choosing among options", MIT Press, 2005.

21

# **Environmental implications**

- No technology is free from environmental impact, although the type & extent of the impacts are widely different
  - The entire life cycle has to be considered
    - Mining, fuel processing, manufacturing of plant components, electricity production, emissions, wastes, dismantling
    - · E.g., some not well known results
      - Embedded energy content of a PV module (polycristalline wafer) takes 2 years of operation to recover (much less with the newer thin film techniques being currently pursued)
      - According to some studies a nuclear plant takes
         5 years to recover the energy spent during construction & fuel manufacturing

from J. W. Storm (CERN 3.4.06) (http://ihp-lx2.ethz.ch/energy21/CERN-3Apr06.ppt)

- All thermal plants (fossil, nuclear, biomass, high temperature thermosolar) need some cooling, since a large fraction of the primary energy is rejected to the environment
  - From "once-through" cooling to cooling towers & dry cooling (expensive & some loss of efficiency)
  - Use of the reject heat: cogeneration & trigeneration



### Waste

- Radioactive materials (high, medium, low intensity)
- Ash & sludge (coal power plants)
- · Dismantling the plant at end of useful life

### Airborne emissions

- CO2 (all fossil plants during operation; but the complete load cycle should be considered)
- SO2 (>90% typically captured with scrubbers)→waste
- NOx (depending on the combustion temperature)
- Particulates (>99% can be captured, although not the sub-micron-sized ones)



- Land area requirements, e.g.:
  - Typically 2 km<sup>2</sup> for a large fossil plant (plus any mining requirements, for coal) vs. 0.2 km<sup>2</sup> for natural gas plants or for nuclear plants (plus the surrounding "exclusion zone")
  - Hydropower: E.g. Hoover Dam (1500 MW) inundates 640 km<sup>2</sup> while a high temperature concentrated solar plant in the US southwest desert would require ~50 km<sup>2</sup> to produce the same energy annually. (Source J.W. Tester book, Ch. 13)
  - Wind: ~ 3 to 4 MW/km2
  - High-temperature thermosolar with parabolic through systems in a good region (2500 kWh/yr.m² available solar energy): 0,5 km² of collector surface area for a 100 MWe plant operating with 12% solar to electric efficiency
  - Fotovoltaic: 5 MW/km2 (non movable panels) for 10 GWh/ (yr. km²) in a good Spanish site

30

# **Environmental implications** (cont.)

- Visual impact, noise, environmental degradation, hazards for wildlife, health threats
  - The NYMBY effect (benefits typically do not accrue to those most disturbed by the plant)
  - Potential incentive mechanisms to reduce opposition
  - · We have to make choices!!!

# Case example:

- In Spain, the power sector is responsible for
  - 90% of SO2 & NOx emissions from large combustion facilities (>50 MWt)
  - 68% & 23% of the total emissions of SO2 & NOx
  - 25% of total CO2 emissions
  - 95% of the high level radioactive waste
- Note that
  - Electricity price does not include most environmental costs
  - Economic efficiency & sustainability require these environmental costs to be internalized

38

# Outline (next session)

- Background
- The technological perspective
- The economic & managerial perspectives
  - Time scales
    - Expansion planning
    - Operation planning
    - Operation
    - Protection & control
  - Economic data & orders of magnitude

ESD.934 / 6.695 / 15.032J / ESD.162 / 6.974 Engineering, Economics and Regulation of the Electric Power Sector Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.