Engineering, Economics & Regulation of the Electric Power Sector

ESD.934, 6.974

Session 2. Monday February 8, 2010 Module A.2

Power system operation & management (2 of 2)

Prof. Ignacio J. Pérez-Arriaga

Outline

- Background
- The technological perspective
- The economic & managerial perspectives
 - Economic data & orders of magnitude
 - Time scales
 - Expansion planning
 - Operation planning
 - Operation
 - Protection & control

Economic data & orders of magnitude

3

Energy units & conversion factors

То:	ΙJ	Gcal	Mtoe	MBtu	GWh
From:	multiply by:				
TJ	1	238.8	2.388 × 10⁻⁵	947.8	0.2778
Gcal	4.1868×10 ⁻³	1	10-7	3.968	1.163 × 10⁻³
Mtoe	4.1868×10⁴	107	1	3.968 × 10 ⁷	11630
MBtu	1.0551 × 10 ⁻³	0.252	2.52×10 ⁻⁸	1	2.931×10 ⁻⁴
GWh	3.6	860	8.6×10⁻⁵	3412	1

 Source: International Energy Agency (IEA), US DOE, The Atlas of Climate Change

_

The power sector in the US (1 de 3)

- Accounts for 42% of primary energy consumption
- Accounts for 35% of U.S. fossil fuel consumption
- · Uses almost no petroleum
- Accounts for 40% of U.S. CO2 emissions
- · Relies mainly on North America for fuel
- Consumption is expected to grow faster than the rate of energy consumption

The power sector in the US (2 de 3)

- Annual revenues (from consumers) > b\$250
- Total asset value > b\$800
 - Generation 60%, Distribution 30%, Transmission 10%
- Ownership (3100 entities)
 - 213 Investor Owned Utilities: 74% consumers
 - IOU ownership of generation was 71% of capacity in 1996 and 38% now
 - While IPP ownership has increased from 8% to 41%
 - 2000 Public Owned Utilities: 15% consumers
 - 930 cooperatives: 11% consumers

Price of electricity

10

US Electricity Market in numbers

r	Retail Prices (c/ kwh)	# Customers
Residential	10.65	123,949,916
Commercial	9.65	17,377,219
Industrial	6.39	793,767
Transportation	9.7	750
Total	9.13	142,121,652

Average Residential Monthly Use: 936 kWhAverage Residential Monthly Bill: \$99.70

Time scales in power systems management

The question

 How can it be possible to meet the demand at any time efficiently and reliably, for an infinite time horizon and under uncertainty?

The answer: Use a temporal hierarchy of decisions

- Decision functions hierarchically chained
- Each function optimizes its own decisions subject to
 - · Its own constraints
 - · Constraints that are imposed from "upstream"

15

Courtesy of Bryan Palmintier. Used with permission.

Time scales (1)

	Horizon	Functions
Expansion Planning	Very long term up to 25 years	 Expansion of generation & network facilities New power plants & lines / Retirement of existing plants
Operation Planning	Long term 2 to 5 years	 Establish long-term contracts Nuclear fuel management Management of multi-year reservoirs
	Medium term from 1 month to 2 years	 Maintenance scheduling Annual management of reservoirs Production cost & reliability models

Time scales (2)

	Horizon	Functions
Planificación Operación	Short term	Pumping storage plants
	1 to 4	Schedule weekly shut-downs &
	weeks	start-ups of thermal plants
ión	Very short	 Unit commitment of all
cac	term	generation units
ınifi	< 1 week	 Detailed decisions of starting-up
<u></u>		& shuting-down plants
Operación	Real time	Economic dispatch
	< 1 hour	Load/frequency & voltage control
Оре		Protection

18

Representative functions & models

- · Analysis of electromagnetic transients
- Protection coordination
- Short circuit analysis
- · Stability analysis
- · Load flow
- State estimation
- · Security / contingency analysis
- · Load forecasting
- · Economic dispatch
- · Optimal load flow
- · Unit commitment
- Hydrothermal coordination
- Reliability / adequacy analysis
- Risk assessment
- Investment (generation / transmission) planning

19

Regulatory paradigms

- · Two regulatory paradigms
 - Centralized Traditional, regulated monopolies
 - Decentralized De-regulated, marketoriented
- Both regulatory approaches seek to achieve the same basic objective
 - in theory they only condition the decisionmaking process, but not the outcome
 - in practice they condition the outcome of planning and operation

Traditional regulation – context

- Monopolies with geographic franchises
- Vertically integrated businesses
- Centralized operation and expansion
 - Cost minimization
- Cost of service-based remuneration.
 - Fixed investment costs (plant, line construction...) €/MW
 - Variable operating costs (fuel consumption, maintenance, ...) €/MWh
- Tariff-based prices for users; utilities subject to mandatory supply obligations
- Minimum (cheap) risk assumed by consumers

Liberalized regulation - context

- De-regulate activities
 - Freedom to invest and operate
 - · Attract private, international investment
 - · Allow new and more efficient initiatives
 - Decentralization
 - Introduce competition to
 - · Lower costs
 - Encourage demand-side participation
- Unbundle business activities
 - Competitive: generation and retailing
 - Natural monopolies: transmission and distribution

Liberalized regulation - context

- Market mechanisms govern generation investment and operating decisions
 - supply-demand balance sets prices & amounts
 - · Wholesale Market
 - remuneration based on the competitive sale of the "electricity product" €/MWh
 - Short-term sales (pool balancing markets)
 - Long-term sales (OTC contracts)
 - higher (expensive) risk, assumed by investors
 - maximized individual profit and market balance

Liberalized regulation - context

- Market mechanisms govern power retailing decisions
 - Distinction between the "wire" business (likened to roads) and the business of selling power (likened to tomatoes), distributed across wires
 - Notion of customer
 - Absence of tariffs
 - Retailing valued for the added value offered to customers

Generation expansion planning (in a liberalized regulatory framework)

- · Every agent decides by itself
- It is a typical investment planning decision under uncertainty
 - Key point is the evaluation of future market behavior
 - market price
 - new investments of competitors
 - fuel prices
 - · demand growth

Network expansion planning (in a liberalized regulatory framework)

- · No radical changes with traditional regulation
- Transmission
 - Generation expansion is unknown → uncertainty
 - Most frequent: centralized planning under supervision of regulator and cost-of-service remuneration
- Distribution
 - Distributor decides network expansion in its franchised territory
 - Distributor is subject to quality of service conditions
 - Diverse remuneration schemes are possible

Operation planing (Medium term): *(in a liberalized regulatory framework)*

- Medium term economic forecasts
- Strategies for profit maximization
 - Contracts, maintenance of facilities, reservoir management
 - Guidelines for preparation of bids: Limited energy plants
 - · The economic value of water
- New issues in power system models
 - Strategic behavior of each firm, impact of stranded cost recovery on market strategies, subsidies or domestic fuel quotas, market price caps, etc.

Operation planning (Short term) (in a liberalized regulatory framework)

- · Preparation of bids for the daily market
 - Selling & purchasing bids are grouped into supply & demand curves and matched using some kind of algorithm to yield the market marginal price
- Issues
 - Internalization of strictly non variable costs
 - Inter-temporal couplings
 - Estimation of the strategic behavior of competitors

31

Real time operation: Centralized environment BREAKERISWITCH INDICATIONS NETWORK INDICATIONS NETWORK INDICATIONS OF PROGRAM TELEMETRY ANALOG MEASUREMENTS COMMUNICATION GENERATOR OUTPUTS RASEGOWER SIGNALS AGC REMOTE TERMINAL UNTS N SUBSTATION PACTIORS OFTEN PARTICIPATION PACTIORS OFTEN SIGNALS BASE POINTS AND CONTINGENCY PENALTY CONTINGENCY ANALYSIS OVERLOADS PROBLEMS DISPLAY ALARMS DISPLAY

Real time operation

(in a liberalized regulatory framework)

- Most security / monitoring activities are the same as in the centralized framework
- Changes in the new open market environment
 - Existence of short-term markets
 - · Intra-daily markets
 - · Regulation markets
 - Unbundled &/or market-oriented ancillary services

33

Ancillary services

Ancillary services Definition

- Activities (may be associated to generation, transmission or distribution) that are needed to guarantee security, quality & efficiency in electricity supply
- Main ancillary services
 - Load-frequency control
 - · Primary regulation
 - · Secundary reserves
 - · Tertiary reserves
 - Voltage control
 - System restoration
 - Black start capability

35

Ancillary services

Traditional & market oriented approaches

- Tradicional regulation: Fully integrated in the generation or transmission activity
- Market oriented regulation: Unbundled & with own scheme (some times market-oriented) of provision & remuneration
 - Provision of ancillary services usually results in extra costs for the suppliers & an increase in the expected price of energy
- · SO establishes required volume of service

Load frequency control (LFC) Primary control

- · Primary control
 - Makes use of the governor in the generator
 - · Time constant of about 1 second
 - Objective: to prevent frequency deviations
 - Each machine has a specific response to frequency deviations
 - The primary control cannot completely recover the nominal frequency value or eliminate errors in scheduled power exchanges

37

Alternator regulation loops

Source: O. Elgerd

Image by MIT OpenCourseWare.

Load frequency control (LFC) Secundary & tertiary controls

- · Secundary control
 - This is the Automatic Generation Control, AGC
 - Time response ~ 1 minute
 - Restores frequency & power exchanges to preset values
 - It cancels the Area Control Error ACE, which combines both objectives
- Tertiary control
 - This is an economic generation dispatch that recomputes the set points of generators & restores secundary reserves
 - Time response ~15 minutes

39

Secondary LFC

Computation of the area control error (ACE)

$$ACE = (P_{INT} - P_{PR}) + B \cdot \Delta f$$

PINT & POTENCIA DE INTERCAMBIO CON OTRAS

PPR = POTENCIA DE INTERCAMBIO PROGRAMADA

Voltage (reactive power) control

- Primary control
 - Voltage regulator in the generating machine
 - Time response of less than 1 second (depending on the type of excitation system: DC, AC, static)
 - It keeps a constant voltage in the generator's output
- Secundary & tertiary controls (less structured than for AGC)
 - Objectives
 - Maintain voltage at preset values at some chosen nodes
 - · Keep the balance in reactive power allocation
 - · Minimize losses
 - Resources
 - · Generators, Transformer taps, Capacitors, SVC's

Security analysis and control

43

Major threats to the power system

- · Lack of generation output to meet demand
 - Either at global system level or locally (because of network constraints)
- Lack of operating generation reserves to respond to plausible changes in demand or production
- Overload of network components
- Violation of voltage limits
- Loss of (or proximity to loose) system stability conditions
 - transient (large scale) instability
 - long-term (frequency response) instability
 - oscillatory (low frequency) instability
 - voltage collapse

Security functions

- State estimation: Assign best possible values to the state variables of the power system from the available measurements
- Contingency analysis: Evaluation of the impact on the system (line overloads, voltages out of range, loss of stability, etc) of potential failures of components
 - generators
 - lines
 - combined failures

47

Power Grid Evolution

- Phase I: Network analyzer (Pre 1950)
- Phase II: Digital computer (1950+)
- Phase III: Control ,system theory, optimization impact (1970+)
- Phase IV: Environmental concerns, HVDC,FACTS + markets (1990+)
- Phase V: advanced communication, sensors, active demand response, distributed generation (2010+)

Protections

- Every piece of equipment is protected against faults, short-circuits in particular
 - Contact (an electric arc, usually) between two conductors or between a conductor & ground
 - Why? Electric, mechanic, atmospheric or human
 - Very large currents are produced → thermal problems &/or mechanical stresses
- It is necessary to detect & eliminate the fault very quickly & then to isolate the faulted element so that it can be repaired
 - Relays detect, power breakers eliminate the fault & disconnect switches isolate the faulted element

49

Types of Protection relays

- Most common types of protection relays
 - Overcurrent relay
 - **Directional** overcurrent relay
 - for selectivity
 - Distance relay
 - · Response time proportional to distance to the fault
 - Overvoltage / undervoltage relays
 - Differential relay
 - · Comparison of two theoretically equal magnitudes
- Time delay relays
 - Selectivity may also be attained by timing relays

Protection for people

- · Earthing system
 - Electrical facility designed so that, at any accessible point, people would be subject at most to non-hazardous <u>pass</u> and <u>contact</u> voltage.
- Pass voltage
 - Voltage between two points on the ground, 1 metre from one another.
- · Contact voltage
 - Voltage between an accessible conductor and a point on the ground 1 metre away

Thank you for your attention

ESD.934 / 6.695 / 15.032J / ESD.162 / 6.974 Engineering, Economics and Regulation of the Electric Power Sector Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.