Engineering, Economics & Regulation of the Electric Power Sector ESD.934, 6.974 Session 2. Monday February 8, 2010 Module A.2 # **Power system operation & management** (2 of 2) Prof. Ignacio J. Pérez-Arriaga ### **Outline** - Background - The technological perspective - The economic & managerial perspectives - Economic data & orders of magnitude - Time scales - Expansion planning - Operation planning - Operation - Protection & control # **Economic data & orders of magnitude** 3 # **Energy units & conversion factors** | То: | ΙJ | Gcal | Mtoe | MBtu | GWh | |-------|---------------------------|-------|-----------------------|-------------------------|------------------------| | From: | multiply by: | | | | | | TJ | 1 | 238.8 | 2.388 × 10⁻⁵ | 947.8 | 0.2778 | | Gcal | 4.1868×10 ⁻³ | 1 | 10-7 | 3.968 | 1.163 × 10⁻³ | | Mtoe | 4.1868×10⁴ | 107 | 1 | 3.968 × 10 ⁷ | 11630 | | MBtu | 1.0551 × 10 ⁻³ | 0.252 | 2.52×10 ⁻⁸ | 1 | 2.931×10 ⁻⁴ | | GWh | 3.6 | 860 | 8.6×10⁻⁵ | 3412 | 1 | Source: International Energy Agency (IEA), US DOE, The Atlas of Climate Change _ # The power sector in the US (1 de 3) - Accounts for 42% of primary energy consumption - Accounts for 35% of U.S. fossil fuel consumption - · Uses almost no petroleum - Accounts for 40% of U.S. CO2 emissions - · Relies mainly on North America for fuel - Consumption is expected to grow faster than the rate of energy consumption # The power sector in the US (2 de 3) - Annual revenues (from consumers) > b\$250 - Total asset value > b\$800 - Generation 60%, Distribution 30%, Transmission 10% - Ownership (3100 entities) - 213 Investor Owned Utilities: 74% consumers - IOU ownership of generation was 71% of capacity in 1996 and 38% now - While IPP ownership has increased from 8% to 41% - 2000 Public Owned Utilities: 15% consumers - 930 cooperatives: 11% consumers # **Price of electricity** 10 # **US Electricity Market in numbers** | r | Retail Prices (c/
kwh) | # Customers | |----------------|---------------------------|-------------| | Residential | 10.65 | 123,949,916 | | Commercial | 9.65 | 17,377,219 | | Industrial | 6.39 | 793,767 | | Transportation | 9.7 | 750 | | Total | 9.13 | 142,121,652 | Average Residential Monthly Use: 936 kWhAverage Residential Monthly Bill: \$99.70 # Time scales in power systems management # The question How can it be possible to meet the demand at any time efficiently and reliably, for an infinite time horizon and under uncertainty? **The answer**: Use a temporal hierarchy of decisions - Decision functions hierarchically chained - Each function optimizes its own decisions subject to - · Its own constraints - · Constraints that are imposed from "upstream" 15 Courtesy of Bryan Palmintier. Used with permission. # Time scales (1) | | Horizon | Functions | |-----------------------|---|--| | Expansion
Planning | Very long
term
up to 25
years | Expansion of generation & network facilities New power plants & lines / Retirement of existing plants | | Operation Planning | Long term 2 to 5 years | Establish long-term contracts Nuclear fuel management Management of multi-year reservoirs | | | Medium
term
from 1
month
to 2 years | Maintenance scheduling Annual management of reservoirs Production cost & reliability models | # Time scales (2) | | Horizon | Functions | |-------------------------|------------|--| | Planificación Operación | Short term | Pumping storage plants | | | 1 to 4 | Schedule weekly shut-downs & | | | weeks | start-ups of thermal plants | | ión | Very short | Unit commitment of all | | cac | term | generation units | | ınifi | < 1 week | Detailed decisions of starting-up | | <u></u> | | & shuting-down plants | | Operación | Real time | Economic dispatch | | | < 1 hour | Load/frequency & voltage control | | Оре | | Protection | 18 ### **Representative functions & models** - · Analysis of electromagnetic transients - Protection coordination - Short circuit analysis - · Stability analysis - · Load flow - State estimation - · Security / contingency analysis - · Load forecasting - · Economic dispatch - · Optimal load flow - · Unit commitment - Hydrothermal coordination - Reliability / adequacy analysis - Risk assessment - Investment (generation / transmission) planning 19 # **Regulatory paradigms** - · Two regulatory paradigms - Centralized Traditional, regulated monopolies - Decentralized De-regulated, marketoriented - Both regulatory approaches seek to achieve the same basic objective - in theory they only condition the decisionmaking process, but not the outcome - in practice they condition the outcome of planning and operation ### **Traditional regulation – context** - Monopolies with geographic franchises - Vertically integrated businesses - Centralized operation and expansion - Cost minimization - Cost of service-based remuneration. - Fixed investment costs (plant, line construction...) €/MW - Variable operating costs (fuel consumption, maintenance, ...) €/MWh - Tariff-based prices for users; utilities subject to mandatory supply obligations - Minimum (cheap) risk assumed by consumers ### **Liberalized regulation - context** - De-regulate activities - Freedom to invest and operate - · Attract private, international investment - · Allow new and more efficient initiatives - Decentralization - Introduce competition to - · Lower costs - Encourage demand-side participation - Unbundle business activities - Competitive: generation and retailing - Natural monopolies: transmission and distribution # **Liberalized regulation - context** - Market mechanisms govern generation investment and operating decisions - supply-demand balance sets prices & amounts - · Wholesale Market - remuneration based on the competitive sale of the "electricity product" €/MWh - Short-term sales (pool balancing markets) - Long-term sales (OTC contracts) - higher (expensive) risk, assumed by investors - maximized individual profit and market balance ### **Liberalized regulation - context** - Market mechanisms govern power retailing decisions - Distinction between the "wire" business (likened to roads) and the business of selling power (likened to tomatoes), distributed across wires - Notion of customer - Absence of tariffs - Retailing valued for the added value offered to customers # Generation expansion planning (in a liberalized regulatory framework) - · Every agent decides by itself - It is a typical investment planning decision under uncertainty - Key point is the evaluation of future market behavior - market price - new investments of competitors - fuel prices - · demand growth # Network expansion planning (in a liberalized regulatory framework) - · No radical changes with traditional regulation - Transmission - Generation expansion is unknown → uncertainty - Most frequent: centralized planning under supervision of regulator and cost-of-service remuneration - Distribution - Distributor decides network expansion in its franchised territory - Distributor is subject to quality of service conditions - Diverse remuneration schemes are possible # **Operation planing (Medium term):** *(in a liberalized regulatory framework)* - Medium term economic forecasts - Strategies for profit maximization - Contracts, maintenance of facilities, reservoir management - Guidelines for preparation of bids: Limited energy plants - · The economic value of water - New issues in power system models - Strategic behavior of each firm, impact of stranded cost recovery on market strategies, subsidies or domestic fuel quotas, market price caps, etc. # **Operation planning** (Short term) (in a liberalized regulatory framework) - · Preparation of bids for the daily market - Selling & purchasing bids are grouped into supply & demand curves and matched using some kind of algorithm to yield the market marginal price - Issues - Internalization of strictly non variable costs - Inter-temporal couplings - Estimation of the strategic behavior of competitors 31 # Real time operation: Centralized environment BREAKERISWITCH INDICATIONS NETWORK INDICATIONS NETWORK INDICATIONS OF PROGRAM TELEMETRY ANALOG MEASUREMENTS COMMUNICATION GENERATOR OUTPUTS RASEGOWER SIGNALS AGC REMOTE TERMINAL UNTS N SUBSTATION PACTIORS OFTEN PARTICIPATION PACTIORS OFTEN SIGNALS BASE POINTS AND CONTINGENCY PENALTY CONTINGENCY ANALYSIS OVERLOADS PROBLEMS DISPLAY ALARMS ### **Real time operation** (in a liberalized regulatory framework) - Most security / monitoring activities are the same as in the centralized framework - Changes in the new open market environment - Existence of short-term markets - · Intra-daily markets - · Regulation markets - Unbundled &/or market-oriented ancillary services 33 # **Ancillary services** # **Ancillary services Definition** - Activities (may be associated to generation, transmission or distribution) that are needed to guarantee security, quality & efficiency in electricity supply - Main ancillary services - Load-frequency control - · Primary regulation - · Secundary reserves - · Tertiary reserves - Voltage control - System restoration - Black start capability 35 # **Ancillary services** **Traditional & market oriented approaches** - Tradicional regulation: Fully integrated in the generation or transmission activity - Market oriented regulation: Unbundled & with own scheme (some times market-oriented) of provision & remuneration - Provision of ancillary services usually results in extra costs for the suppliers & an increase in the expected price of energy - · SO establishes required volume of service # Load frequency control (LFC) Primary control - · Primary control - Makes use of the governor in the generator - · Time constant of about 1 second - Objective: to prevent frequency deviations - Each machine has a specific response to frequency deviations - The primary control cannot completely recover the nominal frequency value or eliminate errors in scheduled power exchanges 37 # **Alternator regulation loops** Source: O. Elgerd Image by MIT OpenCourseWare. ### **Load frequency control (LFC)** Secundary & tertiary controls - · Secundary control - This is the Automatic Generation Control, AGC - Time response ~ 1 minute - Restores frequency & power exchanges to preset values - It cancels the Area Control Error ACE, which combines both objectives - Tertiary control - This is an economic generation dispatch that recomputes the set points of generators & restores secundary reserves - Time response ~15 minutes 39 # **Secondary LFC** Computation of the area control error (ACE) $$ACE = (P_{INT} - P_{PR}) + B \cdot \Delta f$$ PINT & POTENCIA DE INTERCAMBIO CON OTRAS PPR = POTENCIA DE INTERCAMBIO PROGRAMADA # Voltage (reactive power) control - Primary control - Voltage regulator in the generating machine - Time response of less than 1 second (depending on the type of excitation system: DC, AC, static) - It keeps a constant voltage in the generator's output - Secundary & tertiary controls (less structured than for AGC) - Objectives - Maintain voltage at preset values at some chosen nodes - · Keep the balance in reactive power allocation - · Minimize losses - Resources - · Generators, Transformer taps, Capacitors, SVC's # Security analysis and control 43 # Major threats to the power system - · Lack of generation output to meet demand - Either at global system level or locally (because of network constraints) - Lack of operating generation reserves to respond to plausible changes in demand or production - Overload of network components - Violation of voltage limits - Loss of (or proximity to loose) system stability conditions - transient (large scale) instability - long-term (frequency response) instability - oscillatory (low frequency) instability - voltage collapse ### **Security functions** - State estimation: Assign best possible values to the state variables of the power system from the available measurements - Contingency analysis: Evaluation of the impact on the system (line overloads, voltages out of range, loss of stability, etc) of potential failures of components - generators - lines - combined failures 47 ### **Power Grid Evolution** - Phase I: Network analyzer (Pre 1950) - Phase II: Digital computer (1950+) - Phase III: Control ,system theory, optimization impact (1970+) - Phase IV: Environmental concerns, HVDC,FACTS + markets (1990+) - Phase V: advanced communication, sensors, active demand response, distributed generation (2010+) ### **Protections** - Every piece of equipment is protected against faults, short-circuits in particular - Contact (an electric arc, usually) between two conductors or between a conductor & ground - Why? Electric, mechanic, atmospheric or human - Very large currents are produced → thermal problems &/or mechanical stresses - It is necessary to detect & eliminate the fault very quickly & then to isolate the faulted element so that it can be repaired - Relays detect, power breakers eliminate the fault & disconnect switches isolate the faulted element 49 ### **Types of Protection relays** - Most common types of protection relays - Overcurrent relay - **Directional** overcurrent relay - for selectivity - Distance relay - · Response time proportional to distance to the fault - Overvoltage / undervoltage relays - Differential relay - · Comparison of two theoretically equal magnitudes - Time delay relays - Selectivity may also be attained by timing relays # **Protection for people** - · Earthing system - Electrical facility designed so that, at any accessible point, people would be subject at most to non-hazardous <u>pass</u> and <u>contact</u> voltage. - Pass voltage - Voltage between two points on the ground, 1 metre from one another. - · Contact voltage - Voltage between an accessible conductor and a point on the ground 1 metre away # Thank you for your attention ESD.934 / 6.695 / 15.032J / ESD.162 / 6.974 Engineering, Economics and Regulation of the Electric Power Sector Spring 2010 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.