
ESD: Recitation #4




Birthday problem


An approximate method


• Bernoulli trials 
• 

• 
birthday than someone else: 
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Number of trials to compare birthdays of 
all people in the class: 

Probability that nobody has the same 
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The exact solution 

•	 Probability that nobody has the same 
birthday than anybody else: 
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What was the average travel 
distance between two random 

points in Budapest in the 
1850s? 



Budapest = Buda + Pest


Photo removed due to copyright restrictions. 
The Danube River through Budapest, showing the two shores. 



Source: Wikipedia 

Only one bridge: Széchenyi Lánchid (Chain bridge)
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Within each city


• In Buda: 
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• In Pest:
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Between the two cities 

• 4 cases: 

(1) (2) 

(3) (4) 



Between (1) and (3)


• Probability: 
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• Average Distance:
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Between (1) and (4)


• Probability: 
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And continue… 

• Between (2) and (3) 
• Between (2) and (4) 

• Get the final answer… 



More complications 

•	 There is currently ten bridges on the 
Danube. 

•	 How does average traveling distance 
change if we build another one? 



Bertrand’s Paradox 

Joseph Louis François

Bertrand


(1822-1900)


Wrote Calcul des 
probabilités in 1888. 



The question 

•	 Consider an equilateral triangle 
inscribed in a circle. Suppose a cord of 
the circle is chosen at random. 

•	 What is the probability that the chord is 
longer than a side of the triangle? 



Random endpoints


Figure by MIT OCW.



Random radius


Figure by MIT OCW.



Random midpoints


Figure by MIT OCW.



Barbershop


•	 One barber, two chairs for waiting customers.

•	 Prospective customers arrive in a Poisson 

manner at the rate of λ per hour. 
•	 It takes the barber 1/µ on average to serve a 

customer. 
•	 Prospective customers finding the barbershop 

full are lost forever. 
•	 What is the average number of customers? 



Model
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λ = 2.µ 



Solving (1)


•	 What is the probability that N customers 
are in the barbershop? 
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Solving (2) 

• Average number of customers:
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