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Outline

Little’s Law, one more time
PASTA treat
Markov Birth and Death Queueing Systems
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Figure by MIT OCW.



t = time

Cumulative # of Arrivals
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FCFS=First Come, First Served
SJF=Shortest Job First

What about LJF,
Longest Job 1st?



“System” is 
General

Our results apply to entire queue 
system, queue plus service facility
But they could apply to queue only!

Or to service facility only!

L = λW

S.F. Lq = λWq

LSF = λWSF = λ /μ
1/μ = mean service time



All of this means,
“You buy one, you get the other 3 for free!”

W =
1
μ

+W q

L = Lq + LSF = Lq +
λ
μ

L = λW



Markov Queues

Markov here means, “No Memory”



Source: Larson and Odoni, Urban Operations Research



Balance of Flow Equations
λ0P0 = μ1P1

(λn + μn )Pn = λn−1Pn−1 + μn +1Pn +1 for n =1,2,3,...
Another way to balance the flow:

λnPn = μn +1Pn +1 n = 0,1,2,...
Source: Larson and Odoni, Urban Operations Research



λnPn = μn +1Pn +1 n = 0,1,2,...

λ0P0 = μ1P1 
λ1P1 = μ2P2 ...
λnPn = μn +1Pn +1 

P1 = (λ0 /μ1)P0

P2 = (λ1 /μ2)P1 = (λ0 /μ1)(λ1 /μ2)P0 = (λ0λ1 /[μ1μ2])P0

Pn +1 = (λn /μn +1)Pn = (λ0λ1...λn /[μ1μ2...μn +1])P0

Telescoping!

Source: Larson and Odoni, Urban Operations Research



P

λ0P0 = μ1P1 
λ1P1 = μ2P2 ...
λnPn = μn +1Pn +1 

P1 = (λ0 /μ1)P0

P2 = (λ1 /μ2)P1 = (λ0 /μ1)(λ1 /μ2)P0 = (λ0λ1 /[μ1μ2])P0

Pn +1 = (λn /μn +1)Pn = (λ0λ1...λn /[μ1μ2...μn +1])P0

Telescoping!

P0 + P1 + P2 + ...= Pn
n= 0

∞

∑ =1

P0 +(λ0 /μ1)P0 + (λ0λ1 /[μ1μ2])P0 + ...+ (λ0λ1...λn /[μ1μ2 ...μn +1])P0 + ... =1
P0{1+(λ0 /μ1) + (λ0λ1 /[μ1μ2]) + ...+ (λ0λ1...λn /[μ1μ2...μn +1]) + ...} =1

Now, you easily solve for P0 and then for
All other Pn’s.



PASTA:  Poisson Arrivals See Time Averages



Time to 
Buckle your 
Seatbelts!

http://www.census.gov/pubinfo/www/multimedia/img/seatbelt-lo.jpg



The M/M/1 Queue

P0 +(λ0 /μ1)P0 + (λ0λ1 /[μ1μ2])P0 + ...+ (λ0λ1...λn /[μ1μ2 ...μn +1])P0 + ...=1
P0{1+(λ0 /μ1) + (λ0λ1 /[μ1μ2]) + ...+ (λ0λ1...λn /[μ1μ2...μn +1]) + ...} =1

P0{1 +(λ /μ) + (λ2 /μ2) + ...+ (λn +1 /μn +1) + ...} =1

{1+(λ /μ) + (λ2 /μ2) + ...+ (λn +1 /μn +1) + ...} =1/[1− (λ /μ)]
For λ/μ < 1.

Source: Larson and Odoni, Urban Operations Research



The M/M/1 Queue

P0{1 +(λ /μ) + (λ2 /μ2) + ...+ (λn +1 /μn +1) + ...} =1

{1+(λ /μ) + (λ2 /μ2) + ...+ (λn +1 /μn +1) + ...} =1/[1− (λ /μ)]
For λ/μ < 1.

P0 =1− λ /μ   for λ /μ < 1.
Pn = (λ /μ)n P0 = (λ /μ)n (1− λ /μ) for n =1,2,3,...

Source: Larson and Odoni, Urban Operations Research



The M/M/1 Queue

P0 =1− λ /μ   for λ /μ < 1.
Pn = (λ /μ)n P0 = (λ /μ)n (1− λ /μ) for n =1,2,3,...

PT (z) ≡ Pn
n= 0

∞

∑ zn = (λ /μ)n (1− λ /μ)
n= 0

∞

∑ zn =
1− ρ
1− ρz

d
dz

PT (z)
⎤ 
⎦ ⎥ 

z=1

≡ nPn
n= 0

∞

∑ = L =
−(1− ρ)(−ρ)

(1− ρz)2

⎤ 

⎦ 
⎥ =

ρ
1− ρ

 for ρ <1

L = λW = ρ /(1− ρ)
implies W = (1/λ)ρ /(1− ρ) = (1/μ) /(1− ρ)
Lq = λWq  etc.



Mean Wait vs. Rho
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Note the Elbow!



More on M/M/1 Queue
Let w(t) = pdf for time in the system 

(including queue and service)

Assume First-Come, First-Served (FCFS) 
Queue Discipline

w(t) = w(t | k)Pk
k= 0

∞

∑ =
μk +1t ke−μt

k!
ρk

k= 0

∞

∑ (1− ρ)

w(t) = μe−μt (1− ρ) (μtρ)k

k!k= 0

∞

∑ = μ(1− ρ)e−μte−μρt

w(t) = μ(1− ρ)e−μ(1−ρ )t   t ≥ 0

Exercise:  Do the same for Time in queue



Blackboard Modeling

3 server zero line capacity
3 server capacity for 4 in queue
Same as above, but 50% of queuers
balk due to having to wait in queue
Single server who slows down to half 
service rate when nobody is in queue
More?? ….



0,0 0,1

1,0 1,1

About the ‘cut’’ between states to  
write the balance of flow equations…



Optional Exercise:
Is it ‘’better’’ to enter a single 

server queue with service rate μ
or a 2-server queue each with rate 

μ /2?

Can someone draw one or both of the 
state-rate-transition diagrams?  

Then what do you do?



Final Example:  
Single Server, Discouraged Arrivals

λ /2 λ /3 λ /4 λ /5

State-Rate-Transition Diagram, Discouraged Arrivals

Pk =
1
k!

(λ
μ

)k P0

P0 = [1+ (λ
μ

) +
1
2!

(λ
μ

)2 +
1
3!

(λ
μ

)3 + ...+ 1
k!

(λ
μ

)k + ...]−1

P0 = (eλ / μ )−1 = e−λ / μ



P0 = (eλ / μ )−1 = e−λ / μ > 0
ρ = utilization factor =1− P0 =1− e−λ / μ <1.

Pk =
(λ /μ)k

k!
e−λ / μ ,    k = 0,1,2,... Poisson Distribution!

L = time - average number in system = λ/μ  How?
L = λAW      Little's Law, where
λA ≡ average rate of accepted arrivals into system



Apply Little’s Law to Service Facility

ρ = λA (average service time)
ρ = average number in service facility = λA /μ
λA = μρ = μ(1−e−λ / μ )

W =
L
λA

=
λ /μ

μ(1−e−λ / μ )
=

λ
μ2(1−e−λ / μ )
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