ESD.86. Markov Processes and their

Application to Queueing II

Richard C. Larson March 7, 2007

Outline

- Little's Law, one more time
- PASTA treat
- Markov Birth and Death Queueing Systems

Figure by MIT OCW.

"System" is General

- Our results apply to entire queue system, queue plus service facility
- ◆ But they could apply to queue only!

♦ Or to service facility only!

$$L_{SF} = \lambda W_{SF} = \lambda / \mu$$

$$1/\mu = \text{mean service time}$$

All of this means, "You buy one, you get the other 3 for free!"

$$W = \frac{1}{\mu} + W_g$$

$$L \neq L_g + L_{SF} = L_q + \frac{\lambda}{\mu}$$

$$L = \lambda W$$

Markov Queues

Markov here means, "No Memory"

State-transition diagram for the fundamental birth-and-death model.

Balance of Flow Equations

$$\lambda_0 P_0 = \mu_1 P_1$$

$$(\lambda_n + \mu_n) P_n = \lambda_{n-1} P_{n-1} + \mu_{n+1} P_{n+1} \text{ for } n = 1, 2, 3, \dots$$

Another way to balance the flow:

Source: Larson and Odoni, Urban Operations Research

$$\lambda_n P_n = \mu_{n+1} P_{n+1} \ n = 0, 1, 2, \dots$$

$$\begin{array}{ll}
\lambda_{0}P_{0} = \mu_{1}P_{1} & P_{1} = (\lambda_{0}/\mu_{1})P_{0} \\
\lambda_{1}P_{1} = \mu_{2}P_{2} & P_{2} = (\lambda_{1}/\mu_{2})P_{1} = (\lambda_{0}/\mu_{1})(\lambda_{1}/\mu_{2})P_{0} = (\lambda_{0}\lambda_{1}/[\mu_{1}\mu_{2}])P_{0} \\
\lambda_{1}P_{1} = (\lambda_{1}/\mu_{2})P_{1} = (\lambda_{0}/\mu_{1})(\lambda_{1}/\mu_{2})P_{0} = (\lambda_{0}\lambda_{1}/[\mu_{1}\mu_{2}])P_{0} \\
P_{n+1} = (\lambda_{n}/\mu_{n+1})P_{n} = (\lambda_{0}\lambda_{1}...\lambda_{n}/[\mu_{1}\mu_{2}...\mu_{n+1}])P_{0}
\end{array}$$

Telescoping!

Source: Larson and Odoni, Urban Operations Research

$$\lambda_n P_n = \mu_{n+1} P_{n+1} \ n = 0,1,2,...$$

$$\begin{split} \lambda_0 P_0 &= \mu_1 P_1 & P_1 & P_1 & P_2 & P_2 & P_3 & P_4 & P_4 & P_5 & P_6 &$$

Telescoping!

$$P_0 + P_1 + P_2 + \dots = \sum_{n=0}^{\infty} P_n = 1$$

$$P_{0} + (\lambda_{0}/\mu_{1})P_{0} + (\lambda_{0}\lambda_{1}/[\mu_{1}\mu_{2}])P_{0} + ... + (\lambda_{0}\lambda_{1}...\lambda_{n}/[\mu_{1}\mu_{2}...\mu_{n+1}])P_{0} + ... = 1$$

$$P_{0} \{1 + (\lambda_{0}/\mu_{1}) + (\lambda_{0}\lambda_{1}/[\mu_{1}\mu_{2}]) + ... + (\lambda_{0}\lambda_{1}...\lambda_{n}/[\mu_{1}\mu_{2}...\mu_{n+1}]) + ...\} = 1$$

Now, you easily solve for P_0 and then for All other P_n 's.

Time to Buckle your Seatbelts!

The M/M/1 Queue

State-transition diagram for a M/M/1 queueing system with infinite system capacity.

Source: Larson and Odoni, Urban Operations Research

$$P_{0} + (\lambda_{0}/\mu_{1})P_{0} + (\lambda_{0}\lambda_{1}/[\mu_{1}\mu_{2}])P_{0} + ... + (\lambda_{0}\lambda_{1}...\lambda_{n}/[\mu_{1}\mu_{2}...\mu_{n+1}])P_{0} + ... = 1$$

$$P_{0} \{1 + (\lambda_{0}/\mu_{1}) + (\lambda_{0}\lambda_{1}/[\mu_{1}\mu_{2}]) + ... + (\lambda_{0}\lambda_{1}...\lambda_{n}/[\mu_{1}\mu_{2}...\mu_{n+1}]) + ...\} = 1$$

$$P_0\{1+(\lambda/\mu)+(\lambda^2/\mu^2)+...+(\lambda^{n+1}/\mu^{n+1})+...\}=1$$

$$\{1+(\lambda/\mu)+(\lambda^2/\mu^2)+...+(\lambda^{n+1}/\mu^{n+1})+...\}=1/[1-(\lambda/\mu)]$$

For $\lambda/\mu < 1$.

The M/M/1 Queue

State-transition diagram for a M/M/1 queueing system with infinite system capacity.

Source: Larson and Odoni, Urban Operations Research

$$P_0 = 1 - \lambda/\mu$$
 for $\lambda/\mu < 1$.

$$P_n = (\lambda/\mu)^n P_0 = (\lambda/\mu)^n (1 - \lambda/\mu) \text{ for } n = 1, 2, 3, ...$$

$$P_0\{1+(\lambda/\mu)+(\lambda^2/\mu^2)+...+(\lambda^{n+1}/\mu^{n+1})+...\}=1$$

$$\{1+(\lambda/\mu)+(\lambda^2/\mu^2)+...+(\lambda^{n+1}/\mu^{n+1})+...\}=1/[1-(\lambda/\mu)]$$

For λ/μ < 1.

The M/M/1 Queue

$$P^{T}(z) = \sum_{n=0}^{\infty} P_{n} z^{n} = \sum_{n=0}^{\infty} (\lambda/\mu)^{n} (1 - \lambda/\mu) z^{n} = \frac{1 - \rho}{1 - \rho z}$$

$$\frac{d}{dz} P^{T}(z) \Big|_{z=1}^{\infty} = \sum_{n=0}^{\infty} n P_{n} = L = \frac{-(1 - \rho)(-\rho)}{(1 - \rho z)^{2}} \Big|_{z=1}^{\infty} = \frac{\rho}{1 - \rho} \text{ for } \rho < 1$$

$$P_0 = 1 - \lambda/\mu$$
 for $\lambda/\mu < 1$.

$$P_n = (\lambda/\mu)^n P_0 = (\lambda/\mu)^n (1 - \lambda/\mu) \text{ for } n = 1, 2, 3, ...$$

$$L = \lambda W = \rho/(1-\rho)$$
 implies $W = (1/\lambda)\rho/(1-\rho) = (1/\mu)/(1-\rho)$
$$L_a = \lambda W_a \text{ etc.}$$

Mean Wait vs. Rho

More on M/M/1 Queue

Let w(t) = pdf for time in the system (including queue and service)

Assume First-Come, First-Served (FCFS)

Queue Discipline

$$w(t) = \sum_{k=0}^{\infty} w(t \mid k) P_k = \sum_{k=0}^{\infty} \frac{\mu^{k+1} t^k e^{-\mu t}}{k!} \rho^k (1 - \rho)$$

Exercise: Do the same for Time in queue

$$w(t) = \mu e^{-\mu t} (1 - \rho) \sum_{k=0}^{\infty} \frac{(\mu t \rho)}{k!} = \mu (1 - \rho) e^{-\mu t} e^{-\mu \rho t}$$

$$w(t) = \mu(1-\rho)e^{-\mu(1-\rho)t}$$
 $t \ge 0$

Blackboard Modeling

- 3 server zero line capacity
- 3 server capacity for 4 in queue
- Same as above, but 50% of queuers balk due to having to wait in queue
- Single server who slows down to half service rate when nobody is in queue
- ◆ More??

About the 'cut' between states to write the balance of flow equations...

Optional Exercise:

Is it "better" to enter a single server queue with service rate μ or a 2-server queue each with rate $\mu/2$?

Can someone draw one or both of the state-rate-transition diagrams?
Then what do you do?

Final Example: Single Server, Discouraged Arrivals

State-Rate-Transition Diagram, Discouraged Arrivals

$$P_k = \frac{1}{k!} (\frac{\lambda}{u})^k P_0$$

$$P_0 = \left[1 + \left(\frac{\lambda}{\mu}\right) + \frac{1}{2!} \left(\frac{\lambda}{\mu}\right)^2 + \frac{1}{3!} \left(\frac{\lambda}{\mu}\right)^3 + \dots + \frac{1}{k!} \left(\frac{\lambda}{\mu}\right)^k + \dots\right]^{-1}$$

$$P_0 = (e^{\lambda/\mu})^{-1} = e^{-\lambda/\mu}$$

$$P_0 = (e^{\lambda/\mu})^{-1} = e^{-\lambda/\mu} > 0$$

$$\rho$$
 = utilization factor = $1 - P_0 = 1 - e^{-\lambda/\mu} < 1$.

$$P_k = \frac{(\lambda/\mu)^k}{k!} e^{-\lambda/\mu}, \quad k = 0,1,2,... \text{ Poisson Distribution!}$$

$$L = \text{time} - \text{average number in system} = \lambda/\mu \text{ How?}$$

$$L = \lambda_{\Delta} W$$
 Little's Law, where

$$\lambda_A \equiv$$
 average rate of accepted arrivals into system

Apply Little's Law to Service Facility

$$\rho = \lambda_A$$
 (average service time)

$$\rho$$
 = average number in service facility = λ_A / μ

$$\lambda_{\Delta} = \mu \rho = \mu (1 - e^{-\lambda/\mu})$$

$$W = \frac{L}{\lambda_{A}} = \frac{\lambda/\mu}{\mu(1 - e^{-\lambda/\mu})} = \frac{\lambda}{\mu^{2}(1 - e^{-\lambda/\mu})}$$