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Plan for Today

« Multiple Regression
— Estimation of the parameters
— Hypothesis testing
— Regression diagnostics
— Testing lack of fit

e Case study
 Next steps



The Model Equation

For a single variable Y=a+X+e¢

For multiple variables Yy =XB+¢& \“ Is renamed /,

p=k+1
Y, LoXy X - Xlk’ 0 &1
1 X, X, -+ X &
Y, . 21 22 2k ,31 | @2
y=| . X=1. SRS ; B=1". | 25| .
Y, 1 Xt Kn2 o X ﬂk &n

| /N _] -—R\\ —~ | Pk LN

These 1's allow £, to enter the equation without being mult by x’s



The Model Equation y =X +¢

Each row of X Each column of X E(g)=0
ol SPAEIMN v
_Y1—J‘—"r1 X Ko o Xlk_ «— _51_
NS o T haed T
yn > _gn_

There are n \\ f Each observation
observations of Is affected by an

the response Q independent
homoscedastic

normal variates

There are k coefficients



Accounting for Indices

y XP+¢

nxp px1 nx1

p=k+1
V] 1 X, X, o Xyl B,
I s D A L
Y, 1 Xy X o Xy B,




Concept Question

Which of these is a valid X matrix?

(1 5.0m 0.3sec] 1 50m 0.3m |
1 7.1m 0.2sec 1 7.1V 2V
X = X = 0 1 50m 0.1sec
1 3.2m 0.7sec 1 3.2sec 0.7sec| X= 1 71m 03
1 5.4m 0.4sec 1 54A 04A SR
A B C

1) Aonly 4) AandB 7) A B, &C
2) Bonly 5) BandC  8) None
3) Conly 6) AandC  9) |don’t know



Adding h.o.t. to the Model Equation

I.Each.row Of X You can add You can add
IS paired with interactions curvature
an observation \

T v ] s 2
Y1 1 X1 X XX Xy
3 2
y = Y _ 1 Xor X XuXp Xy

_ynj 1 an Xn2 Xn1Xn2 an _

RNV,

observations of
the response |




Estimation of the Parameters 3

Assume the model equation y=Xp+¢

We wish to minimize the

sum squared error L=¢'e= (y B XB)T (y - XB)

To minimize, we take oL T T A
the derivative and set it B =-2X"y+2X X
equal to zero p B
The solution is B _ (XT X)_ley

And we define the fitted model y = Xp



Done in MathCad:

ORIGIN =1
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DCM Example 10-1
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Viscosity of a temperature  feed rate
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Montgomery, D. C., 2001, Design asss

and Analysis of Experiments, John S
Wiley & Sons.



Breakdown of Sum Sqguares

“Grand Total
Sum of Squares”




Breakdown of DOF

N
@ber of y values
N\
1
due to the mea total sum of squares

n- k 1
for the regressmn for error




Estimation of the Error Variance &2

\
JE" N (O, o)
Remember the the model equation 'y =Xp+¢

If assumptions of the
model equation hold, then

E(SS. /(n—k -1))= 0"

So an unbiased 5% = SSE/(n —k-1)
estimate of o? is




a.k.a. “coefficient of
multiple determination”

“R2and Adjusted R2

What fraction of the total sum of squares (SS;)
IS accounted for jointly by all the parameters

In the fitted model?
B SSR SSE R2 can only rise as
= =1 parameters are

SS; SS; added
SSE/(n_p)_l n_l
SS; /(n-1) ) n—1p

R; i can rise or drop as parameters are added

R2

(1-R%)

Razdj =1



Back to
MathCad
Demo
Montgomery
Example 10-1

Montgomery, D. C., 2001, Design
and Analysis of Experiments, John
Wiley & Sons.

p_ PRa-k-1
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Influence of the abservations Hi; 02
s
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Covariance of the residuals

ssp

h—k -1 (identity (n) — H) =

F = 82505

"acccept Ho"

otherwise

gF(0.05.k,n—k - 1) = 0051
"reject Ho" ff F » gF(0.05 k n—-k—1)

"reject Ho"

04

i

a0

1 2 3 4 5

1 174.074 -23.35 17.472 -32.12 -11.55
2 -25.35| 240.182| -25.095 3.015| -10.307
3 17.472| -25.095| 220.326 17.077| -11.703
4 -32.12 3.015 17.077| 200.413| -28.569
5 -11.55| -10.307| -11.703| -28.569| 247.028
6 -13.233( -39.278 -47.08 34.612 -3.194
7 -89.303( -26.083 14.074| -28.608 -11.11
8 0.567| -22.163| -33.688 3.028| -13.462
9 18.594 -5.781| -23.693| -25.044| -23.292
10 1.128| -12.506| -21.896| -18.033| -19.257
11 44.511 -0.523| -32.286| -25.032| -26.447
12 9.581| -13.972| -28.691| -11.008| -18.377
13 -9.007| -40.011| -50.478 38.124 -2.754
14| -19.441 0.816 6.884| -56.654




Why Hypothesis Testing is
Important in Multiple Regression

Say there are 10 regressor variables

Then there are 11 coefficients In a linear
model

To make a fully 2" order model requires
— 10 curvature terms in each variable
— 10 choose 2 = 45 interactions

You'd need 68 samples just to get the matrix
XX to be invertible

You need a way to discard insignificant terms



Test for Significance of
Regression

The hypotheses are

Ho:Bi=f,=...= ff, =0

H,: B; #0for atleast one ]

The test statistic is SS, / k
>SS /(n—k-1)

Reject H, if F, > Fa,k,n_k_l



Test for Significance
Individual Coefficients

The hypotheses are  H,; : ﬂj =0

H, :f; # 0
= (T )_1
The test statistic is t, = p J C= (X X
~2
\/0 ij < Standard error

\/
A2
oC.
Reject H, if ‘to‘ > 1,2 0-k4 \/ J



Test for Significance of
Groups of Coefficients

: to be removed
Partition the coefficients into two groups B =
B>5~to remain

Reduced model y = Xzﬁz + £

H,:B, =0
1 X1 )flz o X Hl:Blio
1 Xo1 2 XKk
X= : : *: . ‘ X2
1 Xy *nz o Ky

Basically, you form X, by removing the columns associated
with the coefficients you are testing for significance




Test for Significance
Groups of Coefficients

Reduced model y=X,P, +¢€

The regression sum of squares  gg v HLvV — nv?
for the reduced model is 2(B,) =y H,y—ny

Define the sum squares of

the removed set given the SR (Bl‘BZ) = SS: (B)—SSk (B,)
other coefficients are in the

model

The partial |F, = SSR(Bl‘BZ)/r Reject Hyif Fy>F,
F test SS¢ /(n—p)




Excel Demo -- Montgomery Ex10-2

J K L M N 0] P Q R S T
23
24 Regression Sialistics
25 Multiple R 0907831
26 R Square 0.824157
27 Adjusted R Sque 0.723675
28 Standard Error | 5978135
29 Qbservations 12
30
31 ANOVA
32 df 5SS MS F ‘gnificance F
33 Regression 4 1172.5 293.125 8.202032 0.008857
34 Residual 7 250.1666667  35.7381
35 Total 11 1422 666667
36
37 Coefficients Standard Error t Stat P-value ower 95%Upper 95%ower 95.0%pper 95.0%
38 Intercept 49.33333 1.725738857  28.58679 1.65E-08 45.25261 53.41405 45.25261 53.41405
39 X Variable 1 5625 2.113589815  2.661349 0.032404 0.627158 10.62284 0.627158 10.62284
40 X Variable 2 10625 2 113589815 5026992 0001518 5627158 1562284 5627158 1562284
41 X Variable 3 1.125 2.113589815 0.53227 0.611009 -3.87284 6.122842 -3.87284 6.122842
42 X Variable 4 -0.875 2.113589815 -0.41399 0.691273 -5.87284 4.122842 -5.87284 4.122842
E u ] |
:g Temperature Pressure Concentration
46
47 k] 3 5 ¥
48 " R - a * + +
49 3 :: :: L4 + + o
50 3 . + +
51
52
53 .—|s -1 05 ﬁ 05 1 \.5. 15 1 .05 0 as 1 5 s f T . s T =
54
55
AR

Montgomery, D. C., 2001, Design and Analysis of Experiments, John Wiley & Sons.



Factorial Experiments

Cuboidal Representation

Exhaustive search of the space of discrete 2-level factors is the
full factorial 23 experimental design



Adding Center Points

Center points allow an experimenter to check for curvature
and, if replicated, allow for an estimate of
pure experimental error



Plan for Today

e Mud cards

e Multiple Regression
— Estimation of the parameters
— Hypothesis testing
‘ Regression diagnostics
— Testing lack of fit

o Case study
 Next steps



The “Hat” Matrix

Since ﬁ = (XT X)_1XTy
and y = Xﬁ
n S N
therefore ¥ =X(X"X) X'y

So we define H= X(XT X)_lXT

Which maps from ,\
observations y to y =Hy
predictions y



Influence Diagnhostics

The relative disposition of points in x space
determines their effect on the coefficients

The hat matrix H gives us an ability to check for
leverage points

h;; is the amount of leverage exerted by point y; on y;

Usually the diagonal elements ~p/n and it is good to
check whether the diagonal elements within 2X of
that



MathCad Demo
on Distribution of
Samples and Its
Effect on
Regression

Plot the residuals

Influence of the observations




Standardized Residuals

Ve

The residuals are defined as e=y-—-y
So an unbiased ~o
estimate of o2 is o =SS /(n—-p)
: . , C
The standardized residuals are definedas  d =—
o

If these elements were z-scores then with probability 99.7%

-3<d, <3



Studentized Residuals

The residuals are defined as E=Y— )A’
therefore e=y—Hy= (I — H)y

So the covariance matrix
of the residuals is

Cov(e) = GZCOV(I — H)

The studentized residuals I =

are defined as \/ (1 ;i)

If these elements were z-scores then with probability 99.7%

22772 -3<r,<3



Testing for Lack of Fit
(Assuming a Central Composite Design)

 Compute the standard deviation of the
center points and assume that
represents the MS,.

Z(Yi o y)

center points SS
MSpe == rI]OC il MS, o = EOF
SS,. =(n-1)MS
PE PE MSLOF

F, =
SSPE +SSLOF = SSE MSPE




Concept Test

* You perform a linear regression of 100 data points
(n=100). There are two independent variables x,
and x,. The regression R?is 0.72. Both 3, and B,
pass a t test for significance. You decide to add the
Interaction x,x, to the model. Select all the things

that cannot happen:

1) Absolute value of ,decreases
2) B,changes sign
3) R? decreases

4) B,fails the t test for significance



Plan for Today

e Mud cards

e Multiple Regression
— Estimation of the parameters
— Hypothesis testing
— Regression diagnostics
— Testing lack of fit

B Case study
 Next steps



Scenario

The FAA and EPA are interested In reducing
CO2 emissions

Some parameters of airline operations are
thought to effect CO2 (e.g., Speed, Altitude,
Temperature, Weight)

Imagine flights have been made with special
equipment that allowed CO2 emission to be
measured (data provided)

You will report to the FAA and EPA on your
analysis of the data and make some
recommendations



Phase One

 Open a Matlab window
* Load the data (load FAAcase3.mat)
e Explore the data



Phase Two

* Do the regression

e Examine the betas and their intervals
e Plot the residuals

y=[CO2./ground_speed];
ones(1:3538)=1,

X=[ones' TAS alt temp weight];
[b,bint,r,rint,stats] = regress(y,X,0.05);
yhat=X*D;

plot(yhat,r,'+")




dims=size(X);
I=2:dims(1)-1;
climb(1)=1;
climb(dims(1))=0;
des(1)=0;
des(dims(1))=1;
climb()=(alt(i)>(alt(i-1)+100))|(alt(i+1)>(alt(i)+100));
des(i)=(alt(i)<(alt(i-1)-100))|(alt(i+1)<(alt(i)-100));
for i=dims(1):-1:1
iIf climb(i)|des(i)
y(i,:)=[1; X(0,:)=[0; yhat(i,:)=[]; r(i,:)=[l;
end
end
hold off
plot(yhat,r,'or")

This code will remove the
points at which the aircraft
IS climbing or descending



Try The Regression Again on
Cruise Only Portions

 \WWhat were the effects on the residuals?
e What were the effects on the betas?

hold off

[b,bint,r,rint,stats] = regress(y,X,0.05);
yhat=X*b;

plot(yhat,r,'+")




See What Happens if We
Remove Variables

« Remove weight & temp
* Do the regression (CO2 vs TAS & alt)
e Examine the betas and their intervals

[b,bint,r,rint,stats] = regress(y,X(:,1:3),0.05);




Phase Three

ry different data (flight34.mat)

Do the regression

Examine the betas and their intervals
Plot the residuals

y=[fuel burn];

ones(1:34)=1;

X=[ones' TAS alt temp];
[b,bint,r,rint,stats] = regress(y,X,0.05);
yhat=X*b;

plot(yhat,r,'+")




Adding Interactions

X(:,9)=X(5,2)."X(:,3); ThlsirI:Peera\llgzltliloidd )

What's the effect
on the
regression?



Case Wrap-Up

nat were the recommendations?
nat other analysis might be done?

nat were the key lessons?



Next Steps

Wenesday 25 April

— Design of Experiments
— Please read "Statistics as a Catalyst to Learning"

Friday 27 April
— Recitation to support the term project

Monday 30 April
— Design of Experiments

Wednesday 2 May
— Design of Computer Experiments

Friday 4 May?? Exam review??
Monday 7 May — Frey at NSF
Wednesday 9 May — Exam #2
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