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Plan for Today

• Efron, 2004
– Bayesians, Frequentists, and Scientists

• Analysis of Variance (ANOVA)
– Single factor experiments
– The model
– Analysis of the sum of squares
– Hypothesis testing
– Confidence intervals



Brad Efron’s Biographical Information

• Professor of Statistics at Stanford University
• Member of the National Academy of Sciences
• President of the American Statistical Association 
• Winner of the Wilks Medal 
• "... renowned internationally for his pioneering work in 

computationally intensive statistical methods that substitute 
computer power for mathematical formulas, particularly the 
bootstrap method. The goal of this research is to extend 
statistical methodology in ways that make analysis more 
realistic and applicable for complicated problems. He 
consults actively in the application of statistical analyses to 
a wide array of health care evaluations." 



Bayesians, Frequentists, and Scientists
by Brad Efron

• How does the paper characterize the 
differences between the two 
approaches?

• What is currently driving a modern 
combination of these ideas?

• What lessons did you take away from 
the examples given? 

Efron, B., 2005, "Bayesians, Frequentists, and Scientists,"  Journal of the 
American Statistical Association, 100, (469):1-5.



Bayes' Theorem

)Pr(
)Pr()Pr(

)Pr(
B

ABA
BA =

)Pr(
)Pr()Pr(

B
BABA ∩

≡
B

U

)Pr(
)Pr()Pr(

A
BAAB ∩

≡

with a bit of algebra

A A∩B



Bayes' Theorem and Hypotheses
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Bayes and Breast Cancer
• The probability that a woman randomly selected from 

all women in the US has breast cancer is 0.8%.  

• If a woman has breast cancer, the probability that a 
mammogram will show a positive result is 90%.  

• If a woman does not have breast cancer, the 
probability of a positive result is 7%.  

• Take for example, a woman from the US who has a 
single positive mamogram.  What is the probability 
that she actually has breast cancer? 1) ~90%

2) ~70%
3) ~9%
4) <1%
5) none of the above



Bayes' Theorem and Hypotheses
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Probabilistic formulation: The probability 
that a woman has breast cancer is 0.8%.  If 
she has breast cancer, the probability that a 
mammogram will show a positive result is 
90%.  If a woman does not have breast cancer, 
the probability of a positive result is 7%.  
Take for example, a woman who has a 
positive result.  What is the probability that 
she actually has breast cancer?

Frequency format: Eight out of every 1000 
women have breast cancer.  Of these eight 
women with breast cancer seven will have a 
positive result with mammography.  Of the 992 
women who do not have breast cancer some 70 
will have a positive mammogram.  Take for 
example, a sample of women who have positive 
mammograms.  What proportion of these women 
actually have breast cancer?

Figure removed due to copyright restrictions. 
Figure 1 in G. Gigerenzer, and A. Edwards. “Simple tools for 
understanding risks: from innumeracy to insight.” British Medical 
Journal 327 (2003), 741-744.



False Discovery Rates

Courtesy of Bradley Efron.  Used with permission.
Source: "Modern Science and the Bayesian-Frequentist Controversy."
http://www-stat.stanford.edu/~brad/papers/NEW-ModSci_2005.pdf

Image removed due to copyright restrictions.



Wilcoxon Null Distribution

Wilcoxon, F., 1945, "Individual Comparisons by Ranking Methods," Biometrics Bulletin 1(6): 80-83.

• Assign ranks to two sets of unpaired data
• The probability of occurence of any total or a lesser total 
by chance under the assumption that the group
means are drawn from the same population:



Wilcoxon "rank sum" test
(as described in the Matlab "help" system)

p = ranksum(x,y,'alpha',alpha)
Description -- performs a two-sided rank sum 

test of the null hypothesis that data in the 
vectors x and y are independent samples 
from identical continuous distributions with 
equal medians, against the alternative that 
they do not have equal medians. x and y can 
have different lengths. ...The test is 
equivalent to a Mann-Whitney U-test.



Wilcoxon "rank sum" test
(what processing is carried out)

BRCA1=[-1.29 -1.41 -0.55 -1.04 1.28 -0.27 -0.57];
BRCA2=[-0.70 1.33 1.14 4.67 0.21 0.65 1.02 0.16];
p = ranksum(BRCA1,BRCA2,'alpha',0.05)

-1.41
-1.29
-1.04

-0.55
-0.57

-0.27

1.28

-0.70

1.14

0.21
0.65
1.02

0.16

1.33
4.67

#4

#8 thru
#12

#14 and
#15

rank sum of BRCA2 is
83 

largest possible is 92
smallest possible is 36

network algorithms applied 
to find p-value is ~2%

Form ranks 
of combined 

data sets



Empirical Bayes
• "... the prior quantities are estimated 

frequentistically in order to carry out Bayesian 
calculations."

• "... if we had only one gene's data ... we would 
have to use the Wilcoxon null, but with thousands 
of genes to consider at once, most of which are 
probably null, we can empirically estimate the null 
distribution itself.  Doing so gives far fewer 
significant genes in this case." 

• "... Estimating the null hypothesis itself from the 
data sounds a little crazy, but that's what I mean 
about huge data sets presenting new 
opportunities..."

Efron, Bradley, 2005, Efron, B. "Bayesians, Frequentists, and Scientists,"  Journal of the American Statistical Association, 100, (469):1-5.



The 
Bootstrap

Image removed due to copyright restrictions.
Figures 4 and 5 in Efron, Bradley. "Modern Science and the Bayesian-Frequentist Controversy."
http://www-stat.stanford.edu/~brad/papers/NEW-ModSci_2005.pdf



Same Basic Ideas in My Research
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A notion of structure in a problem domain.
Quantified by a huge body of data.
Encoded in a probabilistic model.

Used to from "bootstrap" 
estimates of statistics (in this 
case, performance of techniques 
for design of computer 
experiments).
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Wisdom Regarding the 
Foundations of Statistics

It is often argued academically that no science can be more 
secure than its foundations, and that, if there is controversy 
about the foundations, there must be even more controversy 
about the higher parts of the science.  As a matter of fact, the
foundations are the most controversial part of many, if not all,
sciences… As in other sciences, controversies about the 
foundations of statistics reflect themselves to some extent in 
everyday practice, but not nearly so catastrophically as one 
might imagine.  I believe that here, as elsewhere, catastrophe is 
avoided, primarily because in practical situations common sense 
generally saves all but the most pedantic of us from flagrant 
error… Although study of the foundations of a science does not 
have the role that would be assigned to it by naïve first-things-
firstism, it certainly has a continuing importance as the science 
develops, influencing, and being influenced by, the more 
immediately practical parts of the science. 

Savage, L. J., 1954, The Foundations of Statistics, Dover Publications, Inc., New York. 
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Plan for Today

• Efron, 2004
– Bayesians, Frequentists, and Scientists

• Analysis of Variance (ANOVA)
– Single factor experiments
– The model
– Analysis of the sum of squares
– Hypothesis testing
– Confidence intervals



Single Factor Experiments
• A single experimental factor is varied
• The parameter takes on various levels

Observations
Cotton 
weight 

percentage 1 2 3 4 5
15 7 7 15 11 9
20 12 17 12 18 18
25 14 18 18 19 19
30 19 25 22 19 23
35 7 10 11 15 11

Fiber strength in lb/in2experimental 
factor

Each cell 
is a yij

Each row 
is a 

treatment i

a=5 replicates



Breakdown of Sum Squares
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Breakdown of DOF

N
number of y values

1
due to the mean

N-1
total sum of squares

a-1 
for the treatments 

N-a
for error



What is a "Degree of Freedom"?

• How many scalar values are needed to 
unambiguously describe the state of this object?

• What if I were to fix the x position of a corner?



What is a "Degree of Freedom"?

• How many scalar values are needed to 
unambiguously describe the outcome o this 
experiment?

• What if I were to tell you      ?
• What if I were to tell you                    ?

Observations
Cotton 
weight 

percentage 1 2 3 4 5
15 7 7 15 11 9
20 12 17 12 18 18
25 14 18 18 19 19
30 19 25 22 19 23
35 7 10 11 15 11

..y
4...1    . =iyi



Example 
of ANOVA

• What do I get if I compute 
the mean of these 
values?

• What is the variance of 
these values related to?

• If this data were taken in 
the presence of time 
trend, how would the 
tables change if the 
experimental procedure 
were altered to eliminate 
the trend? 

Montgomery, D. C. 1997, Design and Analysis of Experiments



Treatment Effects Model

ijiijy ετμ ++=
Each cell 

is a yij

Each row 
is 

treatment i

Replicates in columns

Observations
Cotton 
weight 

percentage 1 2 3 4 5
15 7 7 15 11 9
20 12 17 12 18 18
25 14 18 18 19 19
30 19 25 22 19 23
35 7 10 11 15 11



Assumptions of the Model

• Error is normally distributed
• With equal variance 

– across treatments and 
– over time

• Effects of other factors do not bias the 
results

ijiijy ετμ ++=



Testing Equality of 
Treatment Means

• Hypotheses

• Test statistic

• Criterion for rejecting H0
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Cochran’s Theorem

• Let Zi be NID(0,1) for i=1,2,…ν and

Where s<ν and Qi has νi degrees of freedom.  
Then Q1, Q2, … Qs are independent chi-square 
random variables with ν1 , ν2 , …νs degrees of 
freedom respectively iff ν =ν1 +ν2 +…+νs

• Implies that                is Fa-1,N-a

s
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E
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MS



Model Adequacy Checking

• Normality
– normal probability plot of residuals 

• Independence / constant variance
– plot residuals versus time sequence
– plot residuals versus fitted values
– Bartlett’s Test [ndim, prob] = barttest(x,0.05)
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Randomization Distribution
• The null hypothesis implies that these 

observations are not a function of the treatments
• If that were true, the allocation of the data to 

treatments (rows) shouldn’t affect the test statistic
• How likely is the statistic observed under re-

ordering? 
Observations

Cotton 
weight 

percentage 1 2 3 4 5
15 7 7 15 11 9
20 12 17 12 18 18
25 14 18 18 19 19
30 19 25 22 19 23
35 7 10 11 15 11



Randomization 
Distribution
• This code reorders 

the data from the 
cotton experiment

• Does the ANOVA
• Repeats 5000 

times
• Plots the pdf of the 

F ratio

trials=5000;bins=trials/100;
X=[7 7 15 11 9 12 17 12 18 18 14 18 18
19 19 19 25 22 19 23 7 10 11 15 11];
group=ceil([1:25]/5);

for i=1:trials
r=rand(1,25);
[B,INDEX] = sort(r);
Xr(1:25)=X(INDEX);
[p,table,stats] = anova1(Xr, group,'off');
Fratio(i)=cell2mat(table(2,5));

end

hold off
[n,x] = hist(Fratio,bins);
n=n/(trials*(x(2)-x(1)));
colormap hsv
bar(x,n)
hold on

xmax=max(Fratio);
x=0:(xmax/100):xmax;
y = fpdf(x,4,20);
plot(x,y,'LineWidth',2)



The Effect of Heteroscedascity

• This Matlab code generates data with a 
no treatment effect on location

• But dispersion is affected by group 
~N(0,group)

• Type I error rate rises substantially
for i=1:1000

group=ceil([1:50]/10);
X=group.*random('Normal',0,1,1,50);
[p,table,stats] = anova1(X, group,'off');
reject_null(i)=p<0.05;

end
plot(group,X,'+'); mean(reject_null)



How Important Is 
Normality?
• This code includes 

uniformly
distributed variates

• The randomization 
distribution is 
computed

• Plots the pdf of the 
F ratio

• Looks like the F 
distribution!

trials=5000;bins=trials/100;
X=random('Uniform',0,1,1,25);
group=ceil([1:25]/5);

for i=1:trials
r=rand(1,25);
[B,INDEX] = sort(r);
Xr(1:25)=X(INDEX);
[p,table,stats] = anova1(Xr, group,'off');
Fratio(i)=cell2mat(table(2,5));

end

hold off
[n,x] = hist(Fratio,bins);
n=n/(trials*(x(2)-x(1)));
colormap hsv
bar(x,n)
hold on

xmax=max(Fratio);
x=0:(xmax/100):xmax;
y = fpdf(x,4,20);
plot(x,y,'LineWidth',2)



Determining Sample Size

• Can be done on the basis of Type II
error probability 
– BUT this requires an estimate of treatment 

effects compared to error
• OR the experimenter can specify 

desired width in the confidence interval
– This only requires an estimate of 

experimental error



Balance

• When the number of samples at each 
treatment is equal across all treatments, the 
design is said to be balanced

• Unbalance causes no difficulty in the 
computation of ANOVA tables

• BUT a balanced design provides 
– More robustness to violation of the 

homoscedascity assumption
– The greatest possible power of the hypothesis test



Confidence Intervals

• One-at-a-time confidence intervals 
apply to each treatment mean

• If you want α to apply to all the 
treatment means (r of them) 
simultaneously just replace α/2 with α/2r

n
MSty

n
MSty E

aNii
E

aNi −− +≤≤− ,2/.,2/. αα μ

Bonferroni method



Confidence Intervals
Between Treatment Means

• For a treatment mean 

• For a difference between treatment 
means

n
MSty

n
MSty E

aNii
E

aNi −− +≤≤− ,2/.,2/. αα μ

n
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n
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Note the factor of two



Determining Sample Size from 
Confidence Intervals

• State the desired width ±ci (e.g. on a 
difference between treatment means)

• Estimate σ of the experimental error
• Solve for n such that

n
tci aN

2

,2/
2σ

α −≈
design balanced afor     anN ⋅=

s=3;    % estimated experimental error
a=5;     %number of treatments
n=2:20;
y=tinv(0.95,n*a-a).*sqrt(s./n);
plot(n,y,'+')



Discovering Dispersion Effects

• Earlier we considered non-constant variance 
as a difficulty – a violation of our model 
assumptions

• BUT sometimes we are interested in studying 
and exploiting these “dispersion effects”
(a.k.a. robust design) 

• Analysis can proceed as usual (ANOVA, etc)
• Best to use log(s) rather than s as the 

response  



Example 3-12 
Smelting Experiment

X=[0.05 0.04 0.05 0.06 0.03 0.05
0.04 0.02 0.03 0.05 0.03 0.02
0.09 0.13 0.11 0.15 0.08 0.12
0.03 0.04 0.05 0.05 0.03 0.02];

logX=log(X);
[p,table,stats] = anova1(logX');

Standard 
deviations of 

the voltage with 
4 control 

algorithms



Next Steps
• Friday 20 April, recitation (by Frey)
• Monday 23 April

– PS#6 due
– Multiple regression

• Wenesday 25 April
– Design of Experiments
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