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Outline

¢ One More Time: Markov Birth and Death
Queueing Systems

¢ Central Limit Theorem
¢ Monte Carlo Sampling from Distributions
¢ ‘Q&A



Buy one, get the other 3 for free!




Optional Exercise:

Is It “better’’ to enter a single
server queue with service rate u
or a 2-server queue each with rate
1 2?

Can someone draw one or both of the

state-rate-transition diagrams?
Then what do you do?



Final Example:
Single Server, Discouraged Arrivals
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P, =("") " =e**>0

p = utilization factor =1-P, =1—-e *'# <1.

k
P, = (Z{(fl) e *#  k=0,12,... Poisson Distribution!

L =time - average number In system = A/u How?
L=A,W Little's Law, where
A, =average rate of accepted arrivals into system



Apply Little’s Law to Service Facility

p = A, (average service time)
o =average number in service facility = 4, / u

Ay = up=p(l—e")

wob Al 2

A, ul-e ") A1-e




Central Limit Theorem Demo
Thanks to Prof. Dan Frey! ;)
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Sum of 3 iid Uniformly Distributed Random Variables
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Sum of 4 iid Uniformly Distributed Random Variables
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Sum of 5 iid Uniformly Distributed Random Variables



It’s Movie Time!



The Gaussian or Normal PDF
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Figure by MIT OCW.
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Central Limit Theorem

Consider the sum S, of n iid random
variables X, where
E[X.]=m, <o

VAR[X.] = 62 <o

S, =X, + X, + .4 X, =D X,
=1
Then, as n “gets large,” S, tends to a
Gaussian or Normal distribution with

mean gqual to nm, and variance equal
toNoy .
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Figure by MIT OCW.




Normalizing Random Variables

Suppose we have ar.v. W having
Mean=E[W]=a and

Variance = E[(W —a)°]= oy,

Define a new r.v.

X =W —a. Then

E[X]=E[W —-a]=E[W]-a=a-a=0
VAR[X]=VAR[W ] =&,



Normalizing Random Variables

Suppose we have ar.v. W having
Mean=E[W]=a and

Variance = E[(W —a)°]= oy,
Define a new r.v.
X =W —a. Then
E[X]=E[W —-a]=E[W]-a=a-a=0
VAR[X]=VAR[W ]= oy,

Or suppose we define
Y =/W. Then

E[Y]=/EIW]=a
oy =E[(W -1a)°]=rE[W -a)°]= 7oy,



Normalizing Random Variables

Suppose we have ar.v. W having
Mean=E[W]=a and

Variance = E[(W —a)°]= oy,

Thus, if we define  RASSREHE
lookups of the

Z=(W —a)lo,, then Gaussian are via

E[Z]=0 the CDF, with a
normalized r.v.

2 _
o, =1

Z 1S called a normalized r.v.



Obtaining Samples of the
Gaussian R.V.

In Monte Carlo simulations, one often
uses the Central Limit Theorem (CLT)
to approximate the Gaussian.

Example 1: Erlang Order N for large
N should be approximately “Gaussian

Example 2: Sum and normalize 12
uniforms over [0,1]. Good idea?




Let’s talk about Monte Carlo
sampling: Inverse Method.
Uses CDF, and i1s Never Fail!
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Inverse Method Also Works for
Continuous Random Variables
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Time to
Buckle your
Seatbelts!

http://www.census.gov/pubinfo/www/multimedia/img/seatbelt-10.jpg



Example 3:

f, (X

he “Relationships Method”

X% /2572

— 0 < X <0

)= 1, ()=

X and Y are zero- mean independent Gaussian r.v.'s.

R=4/X?+Y?
F.(r)=P{R< r}: P{VX2+Y? <1}

Fn=] [

e —(x+y)? /252 dxdy

2 710"

circle of
radius r



Fan)= [ [ et axay

2 107
circle of
radius r
1 —,02/20'2 ,0 —,02/20'2
27[026 :?e do, p20

A Rayleigh pdf

fo(p) = %e—pZ/ZGZ’ 50 With parameter 1/c



F (p)=P{R< p}=1-e7"%" p>0
R, =sample from a uniform pdf over [0,1]

R =1—e” /%" which implies that

p=04-2In(l-R)
0=27R,

X = pCosO=o4/-2In(1-R,) cOS(27R,)
Y = psind= oy-2In(L—R,) sin(27R,)

Here we have 2 exact samples
from the Gaussian pdf, with no
approximation from the CLT!




Spin the Flashlight

And, so, finite variance Is just a
professor’s oral exam trick
guestion? :)
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1. RV." X, ®
2. Sample space for @. [-=/2, n/2]
3. @uniform over [-n/2, /2]



1. RV." X, ®

2. Sample space for @. [-n/2, =/2]

3. ®uniform over [-n/2, n/2]

4. (a) Fy(x) = P{X<x} = P{tanO<x}=P{@ < tan'(x)}= 1/2 + (1/=) tan-1(x)
(b) £ (x) =(d/dx) Fy(x) = 1/(n)(1 + x?) all x

Cauchy pdf Mean =7, Variance = ??77?
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