
! 

fX (x) for all x,"# < x < +# . Define new r.v. Y=X2

true: 

! 

fY (y) =
1

2 y
[ fX ( y ) + fX (" y )]

(b) Apply your result to a situation in which X is uniformly distributed over the
interval [-1, +2]. 
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1. Pedestrian Light, revisited. Apply Little’s Law to the 77 Massachusetts Avenue 
Pedestrian Crossing light problem, to find L for each of the 3 ways of operating the light.
Recall, for each of the 3 modes of operation, you have already derived W or Wq, so this 
should be easy! 

2. Squaring. We’ll be doing lots of squaring of random variables in the 2nd half of this 
subject. So, let’s get started now. 

(a) Suppose we know all about random variable X, having pdf 
. Show that the following is 

. Explain in words what this means. 

3. M/M/k Queue. Let’s examine the queue with homogeneous Poisson arrivals (rate λ), 
negative exponential service times (mean 1/µ), k identical servers, infinite queue capacity 
and no balking or reneging. We assume the steady state exists, implying that λ< kµ. Let 
the state of the system be the number of customers in the system, both in service and in 
queue.

(a) Find the steady state probability Pn=P{n customers in the system}, n=0,1,2,… 
(b) Find W. (Hint: think of Little’s Law and that finding any one of 4 quantities gets

you the other 3 at ‘no extra charge.’ So, to find W all you need to do is compute 
the easiest one of the 4 quantities related to Little’s Law.) 

(c) The systems designers of call centers and other systems involving queueing like
to enjoy economies of scale. Yet they have service performance standards to 
meet. To many in the services industries, the quantity (1-ρ) is ‘paid lost time’,
that is, time that a server is not working serving customers. Suppose a service 
system that can be modeled as an M/M/k Queue has a performance standard that 
states that the mean wait in queue shall be no greater than one minute. Assume 
the mean service time is 1/µ = one minute. Using your results above and an
Excel or similar spreadsheet, examine how (1-ρ) can be made smaller as the call 
volume λ increases, the number of servers k increases, while at all times meeting 
the service standard of one minute or less mean queue wait time. Show that (1-ρ) 
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can become much smaller than the value associated with one server as call 
volume increases, the number of servers increases, but not in direct proportion to 
call volume. 

(d) Suppose you designed your system as in Part (c), and you have 20 servers in your
system. How sensitive are you to errors in forecasted call volumes? What
happens if tomorrow’s call volume is 10% over forecasts? This is a matter of
‘ilities,” reliability, robustness, resilience. Did you follow in the media what
happened to stock traders and brokers and even stock indices as trading volume
zoomed far above routine averages on Tuesday February 27? 

4. M/M/k Queue with Discouraged Voters. We now want to look at a variation of the 
queue of problem 3. Suppose it is Election Day and we focus on a given voting precinct.
Systems managers have a choice before Election Day: how many voting machines
(servers) to place in each precinct. Too many in one precinct may mean no queues at that
precinct but that another precinct is short-changed. Too few implies long lines of voters,
some of whom may not join the line because it is too long.

(a) Suppose arrivals that see a line of queued voters can get discouraged and 
not join the line. Suppose field research has shown that the probability
that a potential voter will join the system and vote is equal to 

! 

pV (nq ) = e
"0.1nq ,  where nq # number of voters in queue upon arrival, nq = 0,1,2,...

. 
For simplicity we assume no reneging, that is, once someone joins the 
voters’ line, they stay and eventually cast their vote. Model this system as 
a Markov Birth and Death Queueing system. Find the steady state 
probabilities, i.e., 

! 

P
n
" {n voters in the system, both in queue and in voting booths}, n = 0,1,2,...

You can do this either by explicit formula or by applying the theory to
generate numerical results for various plausible values of parameters. 

(b) If you interviewed a large sample of voters leaving the polling place, what
is the mean time in queue that they would report to you (assuming 
everyone is accurate and that you have a large sample size). 

(c) Is the answer you found in part (b) indicative of the quality of service
provided by this voting precinct? Why or why not? 

(d) Some say that long lines producing discouraged voters is a form of
‘stealth disenfranchisement.’ That is, the long lines represent a subtle and 
difficult-to-track method of removing a certain fraction of voters from the
voting process. For your model here, can you estimate the fraction of
voters who, by balking at joining the line, may be said to have suffered
from such stealth disenfranchisement? (There are lawsuits pending in 
Ohio that allege just this phenomenon, claiming that the stealth 
disenfranchisement in a recent federal election was deliberate 
manipulation of the system.) 
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