
Multidisciplinary System
Multidisciplinary System
Design Optimization (MSDO)
Design Optimization (MSDO)

Optimization Method Selection

Recitation 5

Andrew March

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics

1

TodayToday’’s Topics
s Topics

• Review optimization algorithms

• Algorithm Selection
• Questions

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics

2

Analytical Methods

•	 Gradient Based:
–	 Steepest descent
–	 Conjugate Gradient
–	 Newton’s Method
–	 Quasi-Newton

•	 Direct Search:
–	 Compass search
–	 Nelder-Mead Simplex

•	 Note: The gradient methods have a constrained
equivalent.
–	 Steepest Descent/CG: Use projection
–	 Newton/Quasi-Newton: SQP
–	 Direct search typically uses barrier or penalty methods

Gradient Methods

• Compute descent direction, dk

• Compute step length αk

• Take step: xk +1 = xk +αk dk

• Repeat until αkdk≤ε

Steepest Descent

• Compute descent direction, dk = −∇f (xk)

• Compute step length, αk
– Exactly: αk = arg min f (xk +αdk)α

– Inexactly: any αk such that for a c1,c2 in (0<c1<c2<1)
f (xk +αk dk) ≤ f (xk)+ c1αk∇f (xk)T dk

∇f (xk +αk dk)T dk ≥ c2∇f (xk)T dk

• Take step: x = x +α dk +1 k k k

• Repeat until αkdk≤ε

Conjugate Gradient

• Compute descent direction, dk = −∇f (xk)+ βk dk −1

()T ∇f (x)
=

f x T (∇ (x) ∇f∇f x ∇ () f − (x))βk = k
T

k or βk
k

T
k k −1

∇ () ()∇ x f () ()xf xk −1 f k −1 ∇ k −1 ∇f xk −1

• Compute step length, αk
– Exactly: αk = arg min f (xk +αdk)α
– Inexactly: any αk such that for a c1,c2 in (0<c1<c2<1)

f (xk +αk dk) ≤ f (xk)+ c1αk∇f (xk)T dk

() dk∇f (xk +αk dk)T dk ≥ c2∇f xk
T

• Take step: xk +1 = xk +αk dk

• Repeat until αkdk≤ε

Newton’s Method

−1• Compute descent direction, dk = −H (xk)∇f (xk)
•	 Compute step length, αk

– Try: αk=1, decrease? If not:
• Exactly: αk = arg min f (xk +αdk)α
• Inexactly: any αk such that for a c1,c2 in (0<c1<c2<1)

f (xk	 +αk dk) ≤ f (xk)+ c1αk ∇f (xk)T dk

∇f (xk +αk dk)T dk ≥ c2∇f (xk)T dk

• Trust-region: αk dk ≤ Δk

• Take step: x = x +α dk +1 k k k

• Repeat until αkdk≤ε

Quasi-Newton

−1•	 Compute descent direction, dk = −B (xk)∇f (xk)
() ≈ H (x); B(x)f 0B xk	 k k

•	 Compute step length, αk
– Try: αk=1, decrease? If not:

• Exactly: αk = arg min f (xk +αdk)α
• Inexactly: any αk such that for a c1,c2 in (0<c1<c2<1)

f (xk +αk dk) ≤ f (xk)+ c1αk ∇f (xk)T dk

() 	dk∇f (xk +αk dk)T dk ≥ c2∇f xk
T

• Take step: xk +1 = xk +αk dk

• Repeat until αkdk≤ε

Direct Search, Compass Search
xk+Δkej

Δk

xk xk+Δkeixk-Δkei

xk-Δkej

• Evaluate f (xk ± Δk ei), ∀i

• If f (xk ± Δk ei) < f (xk)
– Move to minimum of: f (xk ± Δk ei), ∀i

• Else
1

– Δk +1 =
2
Δk

Direct Search, Nelder-Mead

Generate n+1 points in ℜn, {x1,…,xn+1}
Iterate:

x = arg min f (x)• l xi
x = arg max f (x)• h xi

• x = centroid{x1,K,xn+1}
• Reflect (α>0): xr = (1+α)x −αxh

• if (f (xl) < f (xr) and f(xr) < f (xh)), xh = xr , return
• if (f (xr) < f (xl)), Expand (γ>1): xe = γxr + (1 −γ)x
• if (f (xe) < f (xl)), xh = xe , return
• else, xh = xr , return
• if (f (xr) > f (xh)), Contract (0<β<1): xc = βxh + (1− β)x

• if (f (xc) ≤ min{f (xh), f (xr)}), xh = xc , return
• else, xi = (xi + xl)/ 2, ∀i
J. A. Nelder and R. A. Mead, A simplex method for function minimization, Computer Journal,
Vol. 7, pp 308-313, 1965.

Heuristic Methods

• Simulated Annealing
• Genetic Algorithms
• Particle Swarm Optimization (next lecture)

• Tabu Search (next lecture)
• Efficient Global Optimization

Simulated Annealing
• Terminology:

– X (or R or Γ) = Design Vector (i.e. Design, Architecture, Configuration)
– E = System Energy (i.e. Objective Function Value)
– T = System Temperature
– Δ = Difference in System Energy Between Two Design Vectors

• The Simulated Annealing Algorithm
1) Choose a random Xi, select the initial system temperature, and specify the
cooling (i.e. annealing) schedule
2) Evaluate E(Xi) using a simulation model
3) Perturb Xi to obtain a neighboring Design Vector (Xi+1)
4) Evaluate E(Xi+1) using a simulation model
5) If E(Xi+1)< E(Xi), Xi+1 is the new current solution
6) If E(Xi+1)> E(Xi), then accept Xi+1 as the new current solution with a
probability e(- Δ/T) where Δ = E(Xi+1) - E(Xi).

7) Reduce the system temperature according to the cooling schedule.

8) Terminate the algorithm.

Genetic AlgorithmGenetic Algorithm
Initialize Population (initialization)

Select individual for mating (selection)

Mate individuals and produce children (crossover)

Mutate children (mutation)

Insert children into population (insertion)

Are stopping criteria satisfied ?
n
y

Finish Ref: Goldberg (1989)

ne
xt

 g
en

er
at

io
n

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics

13

Particle Swarm

•	 Birds go in a somewhat random
direction, but also somewhat follow a
swarm

•	 Keep checking for “better” locations

– Generally continuous parameters only, but
there are discrete formulations.

Tabu Search

• Keep a list of places you’ve visited
• Don’t return, keep finding new places

Efficient Global Optimization
•	 Started by Jones 1998
• Based on probability theory

–	 Assumes:
T	 2f (x) ≈ β x + N (μ(x),σ (x))

•	 β T x , true behavior, regression

2
•	 N (μ(x),σ (x)), error from

true behavior is normally
distributed, with mean μ(x), and
variance σ2(x)

•	 Estimate function values with a
Kriging model (radial basis
functions)
– Predicts mean and variance
– Probabilistic way to find optima

•	 Evaluate function at “maximum
expected improvement
location(s)” and update model

What’s good algorithm?

Objective Contours:

• Steepest descent
• Conjugate gradient
• Newton’s Method
• Quasi-Newton
• SQP
• Compass-Search
• Nelder-Mead Simplex

• SA
• GA
• Tabu
• PSO
• EGO

What’s good algorithm?

2 2f (x) = 100(x2 − x1) + (1− x1)2

• Steepest descent
• Conjugate gradient
• Newton’s Method
• Quasi-Newton
• SQP
• Compass-Search
• Nelder-Mead Simplex

• SA
• GA
• Tabu
• PSO
• EGO

What’s good algorithm?

Objective Function:

a) Find quick improvement?

b) Find global optima?

• Steepest descent
• Conjugate gradient
• Newton’s Method
• Quasi-Newton
• SQP
• Compass-Search
• Nelder-Mead Simplex

• SA
• GA
• Tabu
• PSO
• EGO

What’s good algorithm?

• x1={1,2,3,4}

• x2∈ℜ
• min f(x1,x2)

• Steepest descent
• Conjugate gradient
• Newton’s Method
• Quasi-Newton
• SQP
• Compass-Search
• Nelder-Mead Simplex

• SA
• GA
• Tabu
• PSO
• EGO

What’s good algorithm?

•	 Airfoil design with CFD
–	 Run-time~3 hours

a)	 Without an adjoint
solution?

b)	 With an adjoint solution?

• Steepest descent
• Conjugate gradient
• Newton’s Method
• Quasi-Newton
• SQP
• Compass-Search
• Nelder-Mead Simplex

• SA
• GA
• Tabu
• PSO
• EGO

What’s good algorithm?

• Minimize weight
– s.t. stress<σmax

• Natran output
– Stress=3.500x104

– (finite precision)

• Steepest descent
• Conjugate gradient
• Newton’s Method
• Quasi-Newton
• SQP
• Compass-Search
• Nelder-Mead Simplex

• SA
• GA
• Tabu
• PSO
• EGO

What’s good algorithm?

• Flat section:

• Steepest descent
• Conjugate gradient
• Newton’s Method
• Quasi-Newton
• SQP
• Compass-Search
• Nelder-Mead Simplex

• SA
• GA
• Tabu
• PSO

• EGO

min cTx

s.t. Ax=b

What’s good algorithm?
• Steepest descent
• Conjugate gradient
• Newton’s Method
• Quasi-Newton
• SQP
• Compass-Search
• Nelder-Mead Simplex
• SA
• GA
• Tabu
• PSO
• EGO

What’s good algorithm?

Nonsmooth objective:

• Steepest descent
• Conjugate gradient
• Newton’s Method
• Quasi-Newton
• SQP
• Compass-Search
• Nelder-Mead Simplex

• SA
• GA
• Tabu
• PSO
• EGO

What’s good algorithm?

Islands of feasibility:
x2

x1

=feasible

• Steepest descent
• Conjugate gradient
• Newton’s Method
• Quasi-Newton
• SQP
• Compass-Search
• Nelder-Mead Simplex

• SA
• GA
• Tabu
• PSO
• EGO

What’s good algorithm?

•	 Problem aspects:
–	 Islands of feasibility
– Many local minima
– Mixed

discrete/continuous
variables

–	 Many design variable
scales (10-1Æ104)

–	 Long function evaluation
time (~2 minutes)

•	 Steepest descent
• Conjugate gradient
•	 Newton’s Method
•	 Quasi-Newton
• SQP
•	 Compass-Search
• Nelder-Mead Simplex

• SA
• GA
•	 Tabu
•	 PSO
• EGO

Example: Operational Design Space
• Objectives

–	 Time to Climb, Fuel Burn, Noise,

Operating Cost

• Parameters
–	 Flap setting
– Throttle setting

– Velocity

–	 Transition Altitude
–	 Climb gradient*
–	 18 Total

• Constraints:
–	 Regulations

•	 No pilot input below 684 ft
•	 Initial climb at V2+15kts

– Flap settings

– Velocity

•	 Min: stall
•	 Max: max q

–	 Throttle
•	 Min: engine idle or positive rate

of climb

•	 Max: full power

Velocity
known

FlFlap
setting
known

Example:Design Space Exploration Methods

• Exploration Challenges
– Islands of feasibility
– Many local minima
– Mixed discrete/continuous variables
– Many design variable scales (10-1Æ104)
– Long function evaluation time (~2 minutes with noise)

• Sequential Quadratic Programming [Climb time: 312 s]
– Stuck at local minima
– Can’t handle discrete integers

• Direct Search (Nelder-Mead) [Climb time: 319 s]
– Similar problems as SQP, but worse results

• Particle Swarming Optimization [Climb time: 319 s]
– Slow running (8-12 hours), optimum not as good as Genetic Algorithm

• Genetic Algorithm [Climb time: 308 s]
– No issues with any of the challenges of this problem.
– No convergence guarantee and SLOW! Run-time ~24 hours.
– But, best result.

Summary

•	 You have a large algorithm toolbox.

•	 You can often tell by inspection what

algorithm might work well.
•	 Always take advantage of aspects of

your problem that will speed
convergence.

MIT OpenCourseWare
http://ocw.mit.edu

ESD.77 / 16.888 Multidisciplinary System Design Optimization
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

