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TodayToday’’s Topics
s Topics

• Review optimization algorithms


• Algorithm Selection 
• Questions 

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox 
Engineering Systems Division and Dept. of Aeronautics and Astronautics 

2 



Analytical Methods 

•	 Gradient Based: 
–	 Steepest descent 
–	 Conjugate Gradient 
–	 Newton’s Method 
–	 Quasi-Newton 

•	 Direct Search: 
–	 Compass search 
–	 Nelder-Mead Simplex 

•	 Note: The gradient methods have a constrained 
equivalent. 
–	 Steepest Descent/CG: Use projection 
–	 Newton/Quasi-Newton: SQP 
–	 Direct search typically uses barrier or penalty methods 



Gradient Methods


• Compute descent direction, dk 

• Compute step length αk 

• Take step: xk +1 = xk +αk dk 

• Repeat until αkdk≤ε 



Steepest Descent


• Compute descent direction, dk = −∇f (xk ) 

• Compute step length, αk 
– Exactly: αk = arg min f (xk +αdk )α 

– Inexactly: any αk such that for a c1,c2 in (0<c1<c2<1) 
f (xk +αk dk ) ≤ f (xk )+ c1αk∇f (xk )T dk 

∇f (xk +αk dk )T dk ≥ c2∇f (xk )T dk 

• Take step: x = x +α dk +1 k k k 

• Repeat until αkdk≤ε 



Conjugate Gradient


• Compute descent direction, dk = −∇f (xk )+ βk dk −1

( )T ∇f (x )
= 

f x T (∇ (x ) ∇f∇f x ∇ ( )  f − (x ))βk = k
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T
k k −1 

∇ ( )  ( )∇ x f ( )  ( )xf xk −1 f k −1 ∇ k −1 ∇f xk −1 

• Compute step length, αk 
– Exactly: αk = arg min f (xk +αdk )α 
– Inexactly: any αk such that for a c1,c2 in (0<c1<c2<1) 

f (xk +αk dk ) ≤ f (xk )+ c1αk∇f (xk )T dk 

( ) dk∇f (xk +αk dk )T dk ≥ c2∇f xk
T 

• Take step: xk +1 = xk +αk dk 

• Repeat until αkdk≤ε 



Newton’s Method


−1• Compute descent direction, dk = −H (xk )∇f (xk ) 
•	 Compute step length, αk 

– Try:  αk=1, decrease? If not: 
• Exactly: αk = arg min f (xk +αdk )α 
• Inexactly: any αk such that for a c1,c2 in (0<c1<c2<1) 

f (xk	 +αk dk ) ≤ f (xk )+ c1αk ∇f (xk )T dk 

∇f (xk +αk dk )T dk ≥ c2∇f (xk )T dk 

• Trust-region: αk dk ≤ Δk 

• Take step: x = x +α dk +1 k k k 

• Repeat until αkdk≤ε 



Quasi-Newton


−1•	 Compute descent direction, dk = −B (xk )∇f (xk )
( ) ≈ H (x ); B(x )f 0B xk	 k k 

•	 Compute step length, αk 
– Try:  αk=1, decrease? If not: 

• Exactly: αk = arg min f (xk +αdk )α 
• Inexactly: any αk such that for a c1,c2 in (0<c1<c2<1) 

f (xk +αk dk ) ≤ f (xk )+ c1αk ∇f (xk )T dk 

( ) 	dk∇f (xk +αk dk )T dk ≥ c2∇f xk
T 

• Take step: xk +1 = xk +αk dk 

• Repeat until αkdk≤ε 



Direct Search, Compass Search 
xk+Δkej

Δk 

xk xk+Δkeixk-Δkei 

xk-Δkej 

• Evaluate f (xk ± Δk ei ), ∀i 

• If  f (xk ± Δk ei ) < f (xk ) 
– Move to minimum of: f (xk ± Δk ei ), ∀i 

• Else  
1 

– Δk +1 = 
2 
Δk 



Direct Search, Nelder-Mead


Generate n+1 points in ℜn, {x1,…,xn+1} 
Iterate: 

x = arg min f (x)• l xi 
x = arg max f (x)• h xi 

• x = centroid{x1,K,xn+1} 
• Reflect (α>0): xr = (1+α)x −αxh 

• if ( f (xl ) < f (xr ) and f(xr ) < f (xh )), xh = xr , return 
• if ( f (xr ) < f (xl )), Expand (γ>1): xe = γxr + (1 −γ )x 
• if ( f (xe ) < f (xl )), xh = xe , return 
• else, xh = xr , return 
• if ( f (xr ) > f (xh )), Contract (0<β<1): xc = βxh + (1− β )x 

• if ( f (xc ) ≤ min{f (xh ), f (xr )}), xh = xc , return 
• else, xi = (xi + xl )/ 2, ∀i 
J. A. Nelder and R. A. Mead, A simplex method for function minimization, Computer Journal, 
Vol. 7, pp 308-313, 1965. 



Heuristic Methods


• Simulated Annealing 
• Genetic Algorithms 
• Particle Swarm Optimization (next lecture)

• Tabu Search (next lecture) 
• Efficient Global Optimization 



Simulated Annealing 
• Terminology: 

– X (or R or Γ) = Design Vector (i.e. Design, Architecture, Configuration) 
– E = System Energy (i.e. Objective Function Value) 
– T = System Temperature 
– Δ = Difference in System Energy Between Two Design Vectors 

• The Simulated Annealing Algorithm 
1) Choose a random Xi, select the initial system temperature, and specify the 
cooling (i.e. annealing) schedule 
2) Evaluate E(Xi) using a simulation model 
3) Perturb Xi to obtain a neighboring Design Vector (Xi+1) 
4) Evaluate E(Xi+1) using a simulation model 
5) If E(Xi+1)< E(Xi), Xi+1 is the new current solution 
6) If E(Xi+1)> E(Xi), then accept Xi+1 as the new current solution with a 
probability e(- Δ/T) where Δ = E(Xi+1) - E(Xi).

7) Reduce the system temperature according to the cooling schedule.

8) Terminate the algorithm.




Genetic AlgorithmGenetic Algorithm
Initialize Population (initialization)


Select individual for mating (selection)


Mate individuals and produce children (crossover)


Mutate children (mutation)


Insert children into population (insertion)


Are stopping criteria satisfied ?
n 
y 

Finish Ref: Goldberg (1989) 

ne
xt

 g
en

er
at

io
n
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Particle Swarm 


•	 Birds go in a somewhat random 
direction, but also somewhat follow a 
swarm 

•	 Keep checking for “better” locations 

– Generally continuous parameters only, but 
there are discrete formulations. 



Tabu Search


• Keep a list of places you’ve visited 
• Don’t return, keep finding new places




Efficient Global Optimization 
•	 Started by Jones 1998 
• Based on probability theory 

–	 Assumes: 
T	 2f (x) ≈ β x + N (μ(x),σ (x)) 

•	 β T x , true behavior, regression 

2 
•	 N (μ(x),σ (x)), error from 

true behavior is normally 
distributed, with mean μ(x), and
variance σ2(x) 

•	 Estimate function values with a 
Kriging model (radial basis 
functions) 
– Predicts mean and variance 
– Probabilistic way to find optima 

•	 Evaluate function at “maximum 
expected improvement
location(s)” and update model 



What’s good algorithm?


Objective Contours:

• Steepest descent 
• Conjugate gradient 
• Newton’s Method 
• Quasi-Newton 
• SQP  
• Compass-Search 
• Nelder-Mead Simplex

• SA  
• GA  
• Tabu  
• PSO  
• EGO  



What’s good algorithm?


2 2f (x) = 100(x2 − x1 ) + (1− x1 )2 

• Steepest descent 
• Conjugate gradient 
• Newton’s Method 
• Quasi-Newton 
• SQP  
• Compass-Search 
• Nelder-Mead Simplex

• SA  
• GA  
• Tabu  
• PSO  
• EGO  



What’s good algorithm?


Objective Function:


a) Find quick improvement? 

b) Find global optima? 

• Steepest descent 
• Conjugate gradient 
• Newton’s Method 
• Quasi-Newton 
• SQP  
• Compass-Search 
• Nelder-Mead Simplex

• SA  
• GA  
• Tabu  
• PSO  
• EGO  



What’s good algorithm?


• x1={1,2,3,4}

• x2∈ℜ 
• min f(x1,x2)


• Steepest descent 
• Conjugate gradient 
• Newton’s Method 
• Quasi-Newton 
• SQP  
• Compass-Search 
• Nelder-Mead Simplex

• SA  
• GA  
• Tabu  
• PSO  
• EGO  



What’s good algorithm?


•	 Airfoil design with CFD 
–	 Run-time~3 hours 

a)	 Without an adjoint
solution? 

b)	 With an adjoint solution?


• Steepest descent 
• Conjugate gradient 
• Newton’s Method 
• Quasi-Newton 
• SQP  
• Compass-Search 
• Nelder-Mead Simplex

• SA  
• GA  
• Tabu 
• PSO 
• EGO  



What’s good algorithm?


• Minimize weight 
– s.t. stress<σmax 

• Natran output 
– Stress=3.500x104 

– (finite precision) 

• Steepest descent 
• Conjugate gradient 
• Newton’s Method 
• Quasi-Newton 
• SQP  
• Compass-Search 
• Nelder-Mead Simplex

• SA  
• GA  
• Tabu  
• PSO  
• EGO  



What’s good algorithm?


• Flat section:


• Steepest descent 
• Conjugate gradient 
• Newton’s Method 
• Quasi-Newton 
• SQP  
• Compass-Search 
• Nelder-Mead Simplex

• SA  
• GA  
• Tabu  
• PSO 

• EGO 




min cTx

s.t. Ax=b


What’s good algorithm? 
• Steepest descent 
• Conjugate gradient 
• Newton’s Method 
• Quasi-Newton 
• SQP  
• Compass-Search 
• Nelder-Mead Simplex 
• SA  
• GA  
• Tabu  
• PSO  
• EGO  



What’s good algorithm?


Nonsmooth objective:


• Steepest descent 
• Conjugate gradient 
• Newton’s Method 
• Quasi-Newton 
• SQP  
• Compass-Search 
• Nelder-Mead Simplex

• SA  
• GA  
• Tabu  
• PSO  
• EGO  



What’s good algorithm?


Islands of feasibility: 
x2 

x1 

=feasible 

• Steepest descent 
• Conjugate gradient 
• Newton’s Method 
• Quasi-Newton 
• SQP  
• Compass-Search 
• Nelder-Mead Simplex

• SA  
• GA  
• Tabu  
• PSO  
• EGO  



What’s good algorithm?


•	 Problem aspects: 
–	 Islands of feasibility 
– Many local minima 
– Mixed  

discrete/continuous 
variables 

–	 Many design variable 
scales (10-1Æ104) 

–	 Long function evaluation 
time (~2 minutes) 

•	 Steepest descent 
• Conjugate gradient 
•	 Newton’s Method 
•	 Quasi-Newton 
• SQP  
•	 Compass-Search 
• Nelder-Mead Simplex


• SA  
• GA  
•	 Tabu 
•	 PSO 
• EGO  



Example: Operational Design Space 
• Objectives 

–	 Time to Climb, Fuel Burn, Noise, 

Operating Cost


• Parameters 
–	 Flap setting 
– Throttle setting

– Velocity 

–	 Transition Altitude 
–	 Climb gradient* 
–	 18 Total 

• Constraints:  
–	 Regulations 

•	 No pilot input below 684 ft 
•	 Initial climb at V2+15kts 

– Flap settings

– Velocity 


•	 Min: stall 
•	 Max: max q 

–	 Throttle 
•	 Min: engine idle or positive rate


of climb

•	 Max: full power 

Velocity 
known

FlFlap 
setting 
known



Example:Design Space Exploration Methods 

• Exploration Challenges 
– Islands of feasibility 
– Many local minima 
– Mixed discrete/continuous variables 
– Many design variable scales (10-1Æ104) 
– Long function evaluation time (~2 minutes with noise) 

• Sequential Quadratic Programming [Climb time: 312 s] 
– Stuck at local minima 
– Can’t handle discrete integers 

• Direct Search (Nelder-Mead) [Climb time: 319 s] 
– Similar problems as SQP, but worse results 

• Particle Swarming Optimization [Climb time: 319 s] 
– Slow running (8-12 hours), optimum not as good as Genetic Algorithm 

• Genetic Algorithm [Climb time: 308 s] 
– No issues with any of the challenges of this problem. 
– No convergence guarantee and SLOW! Run-time ~24 hours. 
– But, best result. 



Summary


•	 You have a large algorithm toolbox.

•	 You can often tell by inspection what 

algorithm might work well. 
•	 Always take advantage of aspects of 

your problem that will speed 
convergence. 
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