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Abstract 

 
A simplified model of the Space Shuttle 
External Tank was used to set up a 
Multidisciplinary System Design Optimization 
problem. First, Return of Investment (ROI) was 
established as single objective. Both gradient 
based and heuristic methods were used to solve 
this problem. Sequential Quadratic 
Programming (SQP) was the gradient based 
method chosen. In the other hand, a Genetic 
Algorithm was used as the heuristic optimization 
tool. In addition, sensitivity analysis was 
performed to the optimal solution found. Finally, 
a multi-objective problem was set up adding the 
total tank weight (TW) as second objective. 
Adaptive Weighted Sum (AWS) was the method 
selected to solve the problem. 

Introduction 

 
After the Cold war, and especially in times of 
economic crisis, manned space programs have 
been questioned per its high costs and the 
associated safety risks. Reusable launch vehicles 
(RLV’s) have emerged as an alternative to 
reduce expenses by reusing equipment and 
commercializing space flights. Recent 
discussions in Obama’s administration about the 

financials of future human space exploration 
have motivated us to explore the use of 
Multidisciplinary System Design Optimization 
(MSDO) as a tool to improve the business case 
of current space systems. 
 
The most successful RLV has been, without 
question, NASA’s Space Shuttle. At a high 
level, the elements of the Space Shuttle (at 
launch) are: the external tank, two solid rocket 
boosters and the orbiter vehicle. The external 

tank has several functions: to provide the fuel 
and the oxidizer for the main engines (liquid 
hydrogen and liquid oxygen) and to serve as 
structure to the system (the solid rocket boosters 
and the obiter vehicle are attached to the tank at 
launch). The tank is the only element that is not 
reused and is also the heaviest.  

Framing the optimization problem  

 
In this analysis we will use a simplified model of 
the external tank as described in Figure 1. This 
model assumes the tank is divided in three main 
sections: the hemisphere, the cylinder and the 
nose cone. Table 1 shows the six design 
variables considered in this problem and Table 2 
shows the parameters assumed. 
 
Figure 1. Graphic representation of the External 
Tank simplified model 
 

 
 
Table 1. Design Variables 
Symbol Variable Variable name 
x1 HR2 Height /radius ratio 
x2 L Length of cylindrical body 
x3 R Radius of the hemisphere 

H

L

R

TCO

TCY

TH

*HR2=H/R
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x4 TCO Nose cone thickness 
x5 TCY Cylinder thickness 
x6 TH Hemisphere thickness 
 
Table 2. Design Parameters considered 
# Parameter name  
1 Cost of material / unit 6.00 dollar/kg 
2 Cost of seam / unit 12 dollar/m 
3 Material weight / unit 0.003 kg/cm3 

4 Pressure 70 N/cm2 
5 Payload 1 14300 N 
6 Payload 2 5000 N 
7 Profit ratio 0.05 
8 Nominal payload 30000 N 
9 Fixed cost per weight 

unit 
2x104 dollar/kg 

 
In addition, this model assumes five constraints 
as described in Table 3. 
 
Table 3. Model constraints 
 
Symbol Constraint description 
g1 Vibration factor ≥ Nominal vibration 

factor 
g2 Tank volume ≥ Nominal volume 
g3 Eq. stress in cylinder ≤ Allowed Stress 
g4 Eq. stress in hemisphere ≤ Allowed 

Stress 
g5 Eq. stress in nose cone ≤ Allowed 

Stress 
 
The main objective we decided to pursue is to 
maximize the Return of Investment (ROI) of the 
system. We selected this objective because it is 
one of the most common metrics to measure 
profitability in projects. As a second objective 
we will minimize the weight of the tank. 
 
This optimization problem requires a 
multidisciplinary approach as different aspects 
in design affect the main output function (ROI). 
Some of these disciplines are: material science, 
structures engineering, aerodynamics, finance, 
manufacturing engineering, mechanical 
vibrations and chemistry. 
 
Based on the interactions between internal 
design variables a modularization was proposed 
for this optimization model. Figure 2 shows the 

N2 diagram showing the modules identified: 
Surfaces and volumes, seam lengths, weight and 
material cost, seam cost, stress, total cost, 
payload and return of investment . 
 
Figure 2. N2 diagram with proposed 
modularization 

 

Model implementation 

 
As initial step, the modules in Figure 2 were 
implemented in an Excel spreadsheet in order to 
understand how the model behaves. By trying 
different combinations in the design vector, we 
were able to get our first feasible solution (a 
design vector that meets all the constraints). 
Expression (1) shows the initial design vector 
and (2) the output of the objective function 
(ROI) at x0. 
 
𝑥0 =   2 4800 435 0.75 0.7 0.86          (1) 
𝑅𝑂𝐼 =  0.0605                                                (2) 
 
Although the design above is meeting all the 
constraints, the ROI output is not acceptable. As 
next step we used Design of Experiments as a 
tool to explore design space. 

Design of experiments 

 
Our experiment plan started by assuming non-
linearity in the factor effects. Therefore, we 
decided to implement a design of experiments 
with three levels per factor. By trial and error we 
defined rough feasibility ranges for each design 
variable. Using this information, the levels 
shown on Table 4 were proposed: 
 
Table 4. DOE factors and levels 
Factors Level 1 Level 2 Level 3 
HR2 1 2 3 
L 4600 4800 5000 
R 420 435 450 

Modules

Design Vector
Surfaces and 

Volumes
Seam lengths

Weight and 

material costo
Seam cost Stress Total Cost Payload

Returt of 

Investment
Constraints

Design Vector 1, 2, 3 1, 2, 3 4, 5, 6 3, 4, 5, 6 1, 3
1, 2, 3, 4

Surfaces and 

Volumes
6, 7, 11 13

Seam lengths 15, 16, 17, 18, 19

Weight and 

material costo
22 21

Seam cost 23

Stress
24, 25, 26

Total Cost 27

Payload 28

Returt of 

Investment

Constraints
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TCO 0.66 0.75 0.84 
TCY 0.66 0.7 0.74 
TH 0.76 0.86 0.96 
 
For a full factorial experiment, with 6 factors 
and 3 levels, we would have 36 = 729 
experiments. In order to keep the number of 
experiments in a manageable quantity, we 
decided to use orthogonal arrays. Per the number 
of factors in our model and the required 
resolution, we decided to implement a L18 
orthogonal array. Table 5 shows our experiment 
plan for DoE. 
 
Table 5. Experiment plan L18 orthogonal array 
Exp HR2 L R TCO TCY TH 

1 1 4600 420 0.66 0.66 0.76 
2 1 4800 435 0.75 0.7 0.86 
3 1 5000 450 0.84 0.74 0.96 
4 2 4600 420 0.75 0.7 0.86 
5 2 4800 435 0.84 0.74 0.76 
6 2 5000 450 0.66 0.66 0.86 
7 3 4600 435 0.66 0.74 0.86 
8 3 4800 450 0.75 0.66 0.96 
9 3 5000 420 0.84 0.7 0.76 

10 1 4600 450 0.84 0.7 0.86 
11 1 4800 420 0.84 0.74 0.96 
12 1 5000 435 0.75 0.66 0.76 
13 2 4600 435 0.84 0.66 0.96 
14 2 4800 450 0.66 0.7 0.76 
15 2 5000 420 0.75 0.74 0.86 
16 3 4600 450 0.75 0.74 0.76 
17 3 4800 420 0.84 0.66 0.86 
18 3 5000 435 0.66 0.7 0.96 

 
After calculating the ROI for each experiment, 
we evaluated the main effects for each factor 
level. Table 6 summarizes these results. Levels 
with the best effect are highlighted in gray. As 
we want to maximize ROI we selected the levels 
with the maximum effect. 
 
Table 6. DoE output: Main effects 
Variable Level Factor Mean Main 

Effect 

HR2 
1 1 -0.2455 0.2555 
2 2 -0.4377 0.0633 
3 3 -0.8197 -0.3187 

L 
1 4600 -0.3959 0.1050 
2 4800 -0.6122 -0.1112 
3 5000 -0.4948 0.0062 

R 
1 420 -0.6945 -0.1936 
2 435 -0.1060 0.3950 
3 450 -0.7024 -0.2014 

TCO 1 0.66 -0.7426 -0.2416 

2 0.75 -0.4401 0.0609 
3 0.84 -0.3806 0.1204 

TCY 
1 0.66 -0.5596 -0.0586 
2 0.7 -0.6043 -0.1034 
3 0.74 -0.3390 0.1620 

TH 
1 0.76 -0.5986 -0.0976 
2 0.86 -0.3494 0.1515 
3 0.96 -0.5959 -0.0950 

 
If we set all design variables to the levels with 
the best main effects we obtain a starting point 
for further optimization analysis: 
𝑥0 =   1 4600 435 0.84 0.74 0.86        (3) 
𝑅𝑂𝐼 =  0.0903                                                (4) 

Gradient-based optimization 

Algorithm selection 

To carry on the shuttle external’s tank 

optimization we decided to implement the 
Sequential Quadratic Programming (SQP) 
method. Nowadays, this gradient-based 
algorithm is considered one of the most efficient 
approaches to obtain the optimal solution in Non 
Linear Programming (NLP). Similarly to 
Newton’s unconstrained optimization method, 

SQP creates in each step towards the objective a 
local model of the problem and solves it. Then, 
based in that result, continues its path to an 
optimal solution. 
 
The main difference of SQP relative to other 
methods is that the former tries to solve the 
nonlinear program directly instead of 
transforming it in a sequence of unconstrained 
minimization problems. Furthermore, as 
explained in class, SQP is widely applied in 
engineering problems and it can be easily 
handled in MATLAB using the fmincon function 
in the optimization toolbox. 

Return of Investment optimization 

We selected ROI as the single objective for 
which to optimize our system. We selected this 
objective per its relevance in real life design 
projects. A company will not invest in executing 
a given design if it will not yield any benefit.  
 
Our approach to implement SQP algorithm was 
to use MATLAB optimization toolbox (fmincon 
function). This algorithm minimizes a given 
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objective function within the constraints 
determined by the user. To fit our model to this 
algorithm we redefined our objective function: 
 
𝐽 𝑥 = −𝑅𝑂𝐼     (5) 
 
In addition, constraints in Table 3 were 
redefined as inequality constraints ≤ 0. As initial 

point, we used the vector obtained from DoE 
exploration. 
 

𝑥0 =

 
 
 
 
 
 
𝐻𝑅2
𝐿
𝑅

𝑇𝐶𝑂
𝑇𝐶𝑌
𝑇𝐻  

 
 
 
 
 

=

 
 
 
 
 
 

1
4600
435
0.84
0.74
0.86  

 
 
 
 
 

   (6) 

 
The model found a minimum after 10 iterations 
and all constraints were successfully satisfied. 
The optimal design vector found is shown 
below: 
 

𝑥∗ =

 
 
 
 
 
 

4.559
4200.74
426.032

0.646
0.646

0.7416  
 
 
 
 
 

    (7) 

 
ROI improved: 
 
𝑅𝑂𝐼 = −𝐽 𝑥∗ = 0.22657 = 22.66%  (8) 
 
This was a significant improvement compared to 
our first “guess”. All constraints are met and we 
have a positive ROI that would make our project 
viable from the investment standpoint. 
 
As the nominal volume required was reduced, 
the optimizer was able to reduce the magnitude 
of all design variables and improved the ROI. 

Scaling 

 
The gradient-based algorithm used in A3 to 
optimize ROI was Sequential Quadratic 
Programming (SQP). The optimal solution 
found in A3 with this method was: 

𝑥∗ =

 
 
 
 
 
 
𝐻𝑅2
𝐿
𝑅

𝑇𝐶𝑂
𝑇𝐶𝑌
𝑇𝐻  

 
 
 
 
 

=

 
 
 
 
 
 

4.559
4200.74
426.032

0.646
0.646

0.7416  
 
 
 
 
 

     (9) 

 
Using finite differencing, the Hessian matrix at 
𝑥∗was calculated: 
 

𝐻 𝑥∗ =

 
 
 
 
 
 

0.0016 −0.0000 0.0002 0.0546 −0.0001 −0.0000
−0.0000 −0.0000 0.0000 −0.0000 0.0003 −0.0000
0.0002  0.0000 0.0000 0.0012 0.0026 0.0005
0.0546 −0.0000 0.0012 0.0001 −0.0001 −0.0000

−0.0001 0.0003 0.0026 −0.0001 −0.0003 −0.0000
−0.0000 −0.0000 0.0005 −0.0000 −0.0000 0.0000  

 
 
 
 
 

    (10) 

 
The diagonal of this hessian matrix is: 
 
0.0016   -0.0000   0.0000   0.0001   -0.0003   0.0000         (11) 

Scaling factors 

The values of the diagonal of the Hessian 
calculated in (1) lie outside the limits defined 
(within 102 and 10-2). Therefore, scaling is 
required for all variables. 
The proposed scaling method is: 
 
𝑦𝑖 = 𝐷𝑖𝑥𝑖 , where 𝐷𝑖 =  𝑠 

1

2    (12) 
 
Where 𝑠 is the power of ten (10x) closest to the 
elements of the diagonal of the Hessian 
computed on (9). The proposed scaling factors 
(D) are shown in Table 7. 
 
Table 7. Proposed scaling factors. 
Design variable Scaling 

factor 
Scaled design 
variable 

Height-radius 
ratio HR2 (x1) 

10-1 y1=(10-1)x1 ;  
x1=10y1 

Length L (x2) 10-5 y2=(10-5)x2 ;  
x2=105y2 

Radius R (x3) 10-3 y3=(10-3)x3 ;  
x3=103y3 

Cone thickness 
TCO (x4) 

10-2 y4=(10-2)x4 ;  
x4=100y4 

Cylinder 
thickness TCY 
(x5) 

10-2 y5=(10-2)x5 ;  
x5=100y5 

Hemisphere 
thickness TH 
(x6) 

10-2 y6=(10-2)x6 ;  
x6=100y6 
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The Hessian matrix was recalculated after 
scaling the design variables, the new values of 
the diagonal are shown below: 
 
0.1560   -0.5405    8.2226    0.7626   -3.2605    0.3673     (13) 
 
Using the scaled design variables and a scaled 
initial vector, SQP algorithm was re-run. The 
fmincon function in MATLAB was used to run 
SQP. The optimal design vector changed and the 
objective function output was improved: 
 

𝑥∗ =

 
 
 
 
 
 

2.3697
4933.417
410.378
0.6227
0.6219
0.7182  

 
 
 
 
 

     (14) 

 
A new value for the objective function was 
found: 
 
𝑅𝑂𝐼 = −𝐽 𝑥∗ = 0.2833 = 28.3%  (15) 
 
The ROI value is better than the 0.22657 we 
obtained after the first intent with the SQP 
algorithm. The Hessian matrix was re-calculated 
at the new optimal design vector. The new 
values for the diagonal were: 
 
4.0033   -0.4911    7.1591    0.5199   -4.2683    0.3691    (16) 
 
The values in (16) lie within the limits we 
initially assumed. Therefore, there is no need for 
further scaling. 

Heuristic Optimization 

 
As an initial attempt, we tried to implement a 
Simulated Annealing algorithm to this 
optimization problem. The approach was to 
implement all the constraints in the perturbation 
function of the algorithm. We encountered 
several complications in this attempt, but the 
most significant was the complexity of the 
perturbation function. The intent of this function 
was to generate a neighboring design vector 
within the constraints of the problem. 
Unfortunately, the time for computing this 
vector was very unpredictable and caused the 
algorithm to stall. 

 
Therefore, we decided to switch to a different 
heuristic method. We selected the GA algorithm. 
Our decision was based on the qualities and 
characteristics of this specific robust technique 
that are suitable for searches in high-
dimensional problems and complex design 
spaces, as this problem presents.  
 
To implement the Genetic Algorithm, our first 
approach was to use the MATLAB optimization 
toolbox (ga function). Typically, GA algorithms 
do not allow implementing constraints directly. 
So, we decided to use the constraints as penalties 
to the fit function. The structure of the fit 
function used in this GA is described below: 
 
f = −𝐽1 𝑥1, 𝑥2 , …  , 𝑥6 + 𝑔1 + 2.85𝑔2 + 𝑔3 + 𝑔4 + 𝑔5    
(17) 
 
Also, lower and upper boundaries for each 
design variable were determined based on what 
we learned from the system in previous analysis. 
Figure 3 shows the evolution of the fitness 
value. 
 
Figure 3. Fitness value vs. generation 

 
 
The algorithm converged after 50 iterations. The 
optimal design vector found was: 
 

𝑥∗ =

 
 
 
 
 
 
𝐻𝑅2
𝐿
𝑅

𝑇𝐶𝑂
𝑇𝐶𝑌
𝑇𝐻  

 
 
 
 
 

=

 
 
 
 
 
 

2.4
4932.893
409.997

0.62
0.619
0.763  

 
 
 
 
 

    (18) 

 
𝑅𝑂𝐼 = −𝐽 𝑥∗ = 0.2836 = 28.4%  (19) 
 
This result is very similar to the one obtained 
with the SQP after scalling. 



6 
ESD.77 MSDO – Spring 2010 

 

Sensitivity analysis 

To do a sensitivity analysis of our output 
function, we calculated the normalized gradient 
for the output function at the optimal solution. 
As first step we calculated the numerical 
gradient of J(x*) using the finite difference 
method. In this analysis, we considered (14) as 
the optimal design vector. The gradient at the 
optimal is: 
 

∇𝐽 𝑥∗ =

 
 
 
 
 
 
0.0123
0.0002
0.0052
0.1334
1.2469
0.1037 

 
 
 
 
 

    (20) 

 
Then we calculated a normalized gradient 
vector: 
 

∇𝐽  =
𝑥∗

𝐽(𝑥∗)
∇𝐽 =

 
 
 
 
 
 
0.102885
3.482822
7.532529
0.293216
2.737194
0.262892 

 
 
 
 
 

               (21) 

 
Figure 4 shows a graphic comparison between 
the normalized gradients. 
 
Figure 4. Tornado chart with normalized 
gradient  

 
 

The variable that seems to have the highest 
impact on the output is the Radius (R) followed 
by the Length (L) and the thickness in the 
cylinder (TCY). These results somehow match 
intuition as we found the design variable R 
affect most of the calculations in the model. 
 

Relative to the sensitivity of the optimal vector 
x* with respect to the fixed parameters, we 
explored fixed cost to launch (FL) and cost of 
seam per length unit (C). In order to calculate 
the sensitivity, we considered the following 
equation: 
 

0


































dp

dx

x

dx

dJ

p

dx

dJ

dx

dJ

dp

d

  (22) 
 
The expression above can be rewritten as: 
 

1












































x

dx

dJ

p

dx

dJ

dp

dx

  (23) 
 
Sensitivity of x* to changes in cost seam per 
length unit (C): 
 

𝑑 𝑥 

𝑑(𝐶)
=

 
 
 
 
 
 
 
 
 
 
𝑑𝐻𝑅2

𝑑𝐶
𝑑𝐿

𝑑𝐶
𝑑𝑅

𝑑𝐶
𝑑𝑇𝐶𝑂

𝑑𝐶
𝑑𝑇𝐶𝑌

𝑑𝐶
𝑑𝑇𝐻

𝑑𝐶  
 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
−0.02576

~0
~0

−0.00413
~0
~0  

 
 
 
 
 

   (24) 

 
Sensitivity of x* to changes in fixed cost to 
launch (FL): 
 

𝑑 𝑥 

𝑑(𝐹𝐿)
=

 
 
 
 
 
 
 
 
 
 
𝑑𝐻𝑅2

𝑑𝐹𝐿
𝑑𝐿

𝑑𝐹𝐿
𝑑𝑅

𝑑𝐹𝐿
𝑑𝑇𝐶𝑂

𝑑𝐹𝐿
𝑑𝑇𝐶𝑌

𝑑𝐹𝐿
𝑑𝑇𝐻

𝑑𝐹𝐿  
 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
−1.993 ∗ 10−5

~0
3.164 ∗ 10−6

−5.155 ∗ 10−6

−2.206 ∗ 10−8

−9.482 ∗ 10−8 
 
 
 
 
 

  

 (25) 
 
From the results shown above, FL does not have 
a significant impact on the location of the 
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optimal vector x*. In the other hand, the cost of 
the seam per unit of length does have small 
impact on the optimal vector especially on the 
height to radius ratio (HR2). 
 
To identify the active constraints we evaluated 
the optimal vector x* in each of the five 
inequality constraints in this model. We found 
that all of them are approximately zero which 
means all constraints are active. Table 8 shows 
the summary: 
 
Table 8. Active constraints at x*.  
Constraint Form Valu

e at 
x* 

Active
? 

Vibration 
constraint 

1-
VF/VFallowed 
≤0 

~ 0 Yes 

Volume 
constraint 

1-
Vtank/Vnomina
l ≤0 

~ 0 Yes 

Eq. 
Cylinder 
stress 
constraint 

Scyl/Sallowed-
1≤0 

~ 0 Yes 

Eq. 
Hemispher
e stress 
constraint 

Shem/Sallowed
-1≤0 

~ 0 Yes 

Eq. Cone 
stress 
constraint 

Scon/Sallowed-
1≤0 

~ 0 Yes 

 
Although the five constraints show values very 
close to zero, we estimate the volume constraint 
is the most important one as it shows the 
smallest value. To evaluate the change in the 
objective function output and in the optimal 
design vector, we modified the nominal volume 
value (relaxed nominal value 5% to reach 
2780080380). The new optimal design vector 
after relaxing the constraint g2: 
 

𝑥∗ =

 
 
 
 
 
 

2.249
4933.18
401.073

0.609
0.608
0.702  

 
 
 
 
 

    (26) 

 

ROI if relaxing Volume nominal value by 5%: 
 
𝑅𝑂𝐼 = −𝐽 𝑥∗ = 0.356  (27) 
 

 Multi-objective Optimization 

 
In the first part of this paper, we optimized the 
system using the single objective function 
Return of Investment (ROI). For a multi-
objective optimization, we decided to use the 
tank total weight as the second objective. In this 
case, our intent is to minimize the weight 
function. We selected the Adaptive Weighted 
Sum method to solve this optimization problem. 
To implement this algorithm the following 
expression was used: 
 
    (28) 
 
 
Specifically:  
 
𝐽1 = −𝑅𝑂𝐼   (29) 
𝐽2 = 𝑇𝑊    (30) 
 
Scale factors to normalize the objective 
functions: 
 
𝑠𝑓1 = 𝐽1

∗ = 0.2739   (31) 
𝑠𝑓2 = 𝐽2

∗ = 2.6364 ∗ 104   (32) 
 
To find the pareto front, SQP was used 
iteratively to find the optimal values for J1 and J2 
at different values of λ. Figure 5 shows the 

pareto front found with this algorithm. All 
constraints are satisfied at all points. 
 
The pareto front plot shows that the objectives 
are mutually opposing. As we maximize ROI, 
we increase the Total Weight of the tank. In the 
other hand, if we minimize the weight we reduce 
the ROI. We considered this result counter-
intuitive as we expected mutually supporting 
objectives (that minimizing weight would 
maximize ROI). 
 
Figure 5. Pareto front. ROI (J1) vs. total tank 
weight TW (J2). 
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To further investigate this result we traced back 
the ROI and TM at the extremes in the Pareto 
frontier. It was found that in order to increase 
ROI we should increase the amount of payload 
that the customer pays. To do this we should 
reduce the tank cross section considered in the 
aerodynamic penalty. Per the stress constraints, 
the material thickness increases, as well as the 
cone height. This combination drives the weight 
up.  
 
In the opposite scenario, minimizing weight 
reduces the size of the cone and also the material 
thickness. Therefore, the tank cross section 
considered for aerodynamic drag increases. This 
translates in less amount of payload that is paid 
by the customer. To confirm our hypothesis we 
created a CAD model for the two designs at the 
extremes: 
 

𝑥∗
(MAX  ROI ) =

 
 
 
 
 
 

2.3709
4933

410.3862
0.6227
06220
0.7182  

 
 
 
 
 

;  𝑥∗
(MIN  TW ) =

 
 
 
 
 
 

1.299
4933

415.9526
0.6386
0.6304
0.7279  

 
 
 
 
 

 

(33) 
 
Figure 6 shows a CAD model of the extreme 
designs described in (22). These CAD models 
are congruent with our hypothesis. 
 

Figure 6. Comparison between designs at the 
extremes of the Pareto frontier. 
 

  
 

Conclusions 

After several iterations using different methods 
we are confident about our exploration of design 
space. Within the given constraints we believe 
we found the global optimum design. For our 
specific problem, the gradient based method 
used (SQP) demonstrated to be very effective 
and quick. But, it was trapped in local optimal 
values when we implemented SQP for the first 
time. This issue was eliminated after scaling. 
 
The heuristic model was useful to expand the 
design space exploration, but the result was very 
similar to the one obtained with the gradient 
based method.  
 
In real-world problems, where multimodal 
functions exist, a Hybrid Optimization strategy 
is highly recommended. For example, heuristic 
optimization methods such as Genetic 
Algorithms (GA) or Simulated Annealing might 
be used to manage the initial steps when seeking 
for solutions to widely explore the design space. 
Then, the utilization of a method such as SQP, 
results extremely useful and efficient to explore 
thoroughly around the solutions found with the 
heuristic tool. 
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Appendix 

 
A1- Modularized master table 

 
 

Description Symbol Unit of 

measurement

Inputs Outputs

1 Height / Radius ratio HR2 cm 11, 12, 17, 28

2 Length of center cylindrical body L cm 9, 10, 15

3 Radius of hemisphere R cm 7,8,9,10,11,12,16, 17, 18, 19, 24, 25, 

26, 28, 32

4 Nose cone thickness Tcone
cm 21, 22, 26

5 Cylinder thickness T cylinder
cm 21, 22, 24

6 Hemisphere thickness Themisphere
cm 21, 22, 25

7 Hemisphere Surface HS cm
2 3 13, 21, 22

8 Hemisphere Volume HV cm
3 3 14

9 Cylinder Surface CS cm
2 2,3 13, 21, 22

10 Cylinder Volume CV cm
3 2,3 14

11 Cone Surface CnS cm
2 1,3 13, 21, 22

12 Cone Volume CnV cm
3 1,3 14

13 Tank surface TS cm
2 7, 9, 11 28

14 Tank volume TV cm
3 8, 10, 12 36

15 Seam length in Cylinder S1 cm 2 20, 23

16 Seam length in Hemisphere S2 cm 3 20, 23

17 Seam length in Cone S3 cm 1, 3 20, 23

18 Seam length cylinder & hemisph S4 cm 3 20, 23

19 Seam length cylinder & cone S5 cm 3 20, 23

20 Total Seam length St cm 15-19

21 Tank weight TW kg 9,5,7,6,11,4 30, 32

22 Tank material cost Cmaterial
dollar 9,5,7,6,11,4 27

Seam Cost 23 Cost of seams Cseam
dollar 15-19 27

24 Cylinder Eq. stress E N/cm sq 3, 5 34

25 Sphere Eq. stress SE N/cm sq 3, 6 35

26 Cone Eq. stress CE N/cm sq 3, 4 33

Total cost 27 Total Cost TC dollar 22, 23 27

Payload 28 Aerodynamic drag penalty A kg 1,3,13 30

29 True Launch cost TLC dollar 27 31

30 Customer pays CP dollar 21, 28 31

31 ROI ROI dollar 29, 30

32 Vibration Constraint g1 1,2,3,4,21

33 Stress constraint cone g5 N/cm
2 26

34 Stress constraint cylinder g3 N/cm
2 24

35 Stress constraint hemisphere g4 N/cm
2 25

36 Volume constraint g2 cm
3 14
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