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A low fidelity, response surface model is used to optimize the wing and tail geometry of a 
supersonic jet with regard to its profit potential in the business jet market. The model is used 
to rapidly asses the design space and give preliminary indication as to the performance of 
such aircraft. Sequential quadratic programming and simulated annealing are considered as 
optimization techniques. Recommendations for future study are provided. 

Nomenclature 
RSE = response surface equation 
SA = simulated annealing 
SQP = sequential quadratic programming 
SSBJ = supersonic business jet 
� = objective function 
� = response surface input variable 
� = response surface coefficient 
� = objective weight factor 

I. Introduction 

STarting with the introduction of the Aérospatiale­BAC Concorde in the late 1960’s, the vision for a viable 
supersonic transport aircraft has remained largely unrealized. While a supersonic transport aircraft would 

provide a significant reduction in travel time, the materials and technologies required to allow for these speed 
increases incur significant cost penalties over conventional, subsonic jets. 1 

Although the average traveler may be unwilling to pay the increased ticket prices associated with supersonic 
aircraft, the fast paced lifestyles and deep pockets of business executives allow them to justify more expensive 
flights. This potential for a sustainable market has directed the focus on supersonic aircraft design to the business jet 
sector. In addition to its prospective feasibility, the business jet market provides further stability under variable 
economic conditions as well as extended applications to military, MEDEVAC, and airfreight.2 

The challenges to designing a profitable SSBJ come with the need to meet strict performance and operating 
requirements while maintaining sufficiently low acquisition and operating costs. Increased environmental 
awareness has lead to a premium being placed on low emissions and noise pollution. The creation of sonic booms in 
supersonic flight and the high fuel burn of supersonic engines make these requirements particularly challenging for 
the SSBJ. Additional performance requirements also constrain SSBJ designs. According to Chudoba et al., a feasible 
SSBJ should achieve a range of at least 4500 nautical miles with a cruise speed between Mach 1.4 and Mach 1.8.1 

Furthemore, the SSBJ needs to comply with existing regulations and be capable of operating out of a wide range of 
commercial airports. 

This paper describes a preliminary optimization of a SSBJ wing and tail planform geometry with respect to the 
potential profitability of the vehicle as a supplement to the subsonic business jet market. The optimization is based a 
low fidelity response surface and performance constraints are used to limit the feasible design space. Although, an 
optimal design is presented, the limitations of the model and lack of data on the relative importance of the different 
measures of merit preclude a detailed design from being recommended. Instead, this paper focuses on the techniques 
used in the optimization. Recommendations are provided for future work. 
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II. System Model 

A. Model Overview 
The system model used in this study takes the wing and tail geometries and engine parameters shown in Table 1 

and outputs the performance metrics shown in Table 3 
and Table 4. With the exception of the area variables, the 
planform geometry variables have all been normalized 
with respect to the wing semi­span. 

The model was provided as a “black box” simulation 
for a supersonic aircraft design. As a result, the 
assumptions and additional parameters in the model are 
unknown. Each of the model outputs are defined, as in 
Eq. (1), by a response surface composed of linear and 
interaction terms only. 


 
�� 
��� = �	 + ∑��� ���� + ∑��� ∑����� ������� (1) 

While the RSEs provide very fast function 
evaluations (on the order of 1e­5 seconds to compute all 
outputs of a given configuration in MATLAB) , they also 
impose several limitations on the model performance.3 

The first of these limitations is that the accuracy is only 
guaranteed in a small region around the sampled points. 
This limitation confines the design space that the model 
can operate in. The upper and lower bounds shown in 
Table 1 are used to normalize each of the variables from 
­1 to +1 in the RSEs. As a result, this model cannot be 
expected to be a good predictor outside of those bounds. 

Since the model RSEs only include first order and 
interaction terms, the model is also unable to predict 
local extrema. As a result, we expect any optimal design 
to have active constraints. 

Table 1. Model inputs 
Type Variable Name Min Max 

T
ra

n
sl

a
ti

o
n

V
a

ri
a

b
le

s Wing Apex (ft) 

Horizontal Tail Apex (ft) 

Vertical Tail Apex (ft) 

XWING 

XHT 

XVT 

25 

82 

82 

28 

87.4 

86.4 

P
la

n
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rm
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e
o

m
e

tr
y

 V
a

ri
a

b
le

s

Leading Edge Kink X-Location 

Leading Edge Tip X-Location 

Trailing Edge Tip X-Location 

Trailing Edge Kink X-Location 

Trailing Edge X-Location 

Kink Y-Location 

Wing Area (ft
2
) 

Horizontal Tail Area (ft
2
) 

Veritical Tail Area (ft
2
) 

X1LEK 

X2LET 

X3TET 

X4TEK 

X5TER 

Y1KIN 

WGARE 

HTARE 

VTARE 

1.54 

2.1 

2.4 

2.19 

2.19 

0.44 

8500 

400 

350 

1.69 

2.36 

2.58 

2.36 

2.5 

0.58 

9500 

700 

550 

E
n

g
in

e
 V

a
ri

a
b

le
s 

Nozzle Thrust Coefficient 

Turbine Inlet Temperature (
o
R) 

Bypass Ratio 

Overall Pressure Ratio 

Fan Inlet Mach Number 

Fan Pressure Ratio 

Engine Throttle Ratio 

Suppressor Area Ratio 

Take-off Thrust Multiplier 

Thrust-to-Weight Ratio 

CFG 

TIT 

BPR 

OPR 

FANMN 

FPR 

ETR 

SAR 

TOTM 

FNWTR 

0.97 

3050 

0.36 

18 

0.5 

3.2 

1.05 

1.9 

0.85 

0.28 

0.99 

3140 

0.55 

22 

0.7 

4.2 

1.15 

4.7 

1.0 

0.32 

Finally, it is likely that the higher fidelity model 
behind the RSEs is a computer simulation. Since error is typically not randomly distributed in computer simulations, 
the RSEs may include some bias. 

B. Model Benchmarking and Validation 
Due to the very limited constraints of the RSEs, no existing aircraft designs could be found for comparison that 

satisfied all of the wing and tail geometry constraints. Nevertheless, two supersonic aircraft with similar mission 
profiles, the Sukhoi­Gulfstream S­21 and the Aérospatiale­BAC Concorde, were modeled (see Figure 1) and the 
outputs compared to the actual values in Table 2. The model over predicts the S­21 weight by a factor of about five 
and gives nonsense values for the Concorde weights and runway distances. These errors are likely due largely to the 
model extrapolation. The S­21 model violates 9 of the 22 input constraints while the Concorde model violates 12. 
However, the model may also fail to take into account other aspects of these designs such as canards and delta wing 

(a) (b) 

Figure 1. Model geometries for the (a) Concorde and (b) S­21 overlaid on drawings of their actual planforms 
2


American Institute of Aeronautics and Astronautics

05112010 



vortex lift generation. Similarly, the Table 2. Validation output comparisons 
general technology level (materials, 
construction techniques, etc.) at the time 
of these designs may have been different 
than when this model was developed. 
Consequently, these results are not 
appropriate for comparison and do not 
invalidate the model. 

Since the model constraints prohibit 
direct comparison with other aircraft, a 
baseline configuration at the center of the 
RSEs was chosen and compared to 
maximum take­off weight and wing 
loading trends for supersonic transport 
aircraft. Figure 3 shows that the 
maximum take­off weight for the 
baseline design is on par with other 

Type Output S21 Model S21 Act. 
Concorde 

Model 

Concorde 

Actual 

C
o

st

Average Yeild per Revenue 

Passenger Mile ($/mi) 

Acquisition Cost (Million $) 

0.1314 

260.28 

0.105 

303.86 350 

P
e

rf
o

rm
a

n
ce

Take-off Gross Weight (lbs) 

Fuel Weight (lbs) 

Take-off Field Length (ft) 

Landing Field Length (ft) 

Approach Speed (kts) 

512,090 

289,560 

19,358 

12,508 

185 

106,924 807,610 412,000 

67,409 2,502,000 210,940 

6,495 103,360 11,778 

6,495 14,024 

146 242 

F
e

a
si

b
il

it
y

 

Approach Angle of Attack (deg) 

Fuel Volume Ratio 

(available/required) 

11.19 

0.58 

12.1 

0.01 

E
n

v
ir

o
n

m
e

n
ta

l Delta Sideline Noise 

Delta Flyover Noise 

Delta Approach Noise 

-2.6 

34.9 

22.1 

24 

-207 

-195 
designs. However, from Figure 2 it can 
be seen that the wing loading of the baseline model configuration is significantly higher. These results do not 
definitively imply that the model is flawed, however, they are cause for concern and the authors advise that the 
model formulation and assumptions be more thoroughly validated. 

Figure 3. Maximum take­off weights of several 
supersonic aircraft. 

Baseline 
(433,788.5 kg) 

Figure 2. Wing loading trends for supersonic 
aircraft. 

Baseline 
(9000, 956340) 

III. Problem Formulation 
In accordance with the objective to design a highly profitable SSBJ that complies with noise and performance 

regulations required to operate out of commercial airports, the optimization approach considered four different 
objectives that directly contribute to the profitability of a transport aircraft. Table 3 presents these four objectives 
and their individual optimization goals. Based on these objectives, the market feasibility of the aircraft can be 

largely determined. Table 3. Optimization objectives 
Objective Name Direction 

Take­off gross weight is often correlated to aircraft cost as 
well as size. While cost is already taken into account by a 

Take-off Gross Weight (lbs) TOGW Minimize separate objective, minimizing take­off gross weight as an 
individual objective should result in smaller aircraft that are 

Fuel Weight (lbs) FUELWT Minimize 
easier and cheaper to store and maintain. 

Average Yeild per Revenue Fuel weight is important for profitable aircraft because fuel DPRPM Maximize 
Passenger Mile ($/mi) cost is a large component of the aircraft operating cost. 

Acquisition Cost (Million $) ACQCST Minimize 

3
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Minimizing fuel weight also helps to mitigate cost risk due to variability in fuel prices. 

The average yield per revenue passenger mile is an indicator of the potential profit generation of the aircraft. 

This number, combined with the expected lifetime and passenger capacity of the aircraft, can be used to determine 

the expected profit generated by the aircraft.  

Finally, acquisition cost reflects the purchase cost of the aircraft. This figure is important not only because it 

gives the upfront cost of the aircraft, but also because it represents a discrete step size that affects the purchasing 

schedule of airlines or charter companies who wish to include the aircraft in their inventories. 

The output constraints placed on the 

optimization are shown in Table 4. These 

constraints are divided into three categories 

based on whether they are constraints on the 

performance, constraints on the design 

feasibility, or environmental noise constraints.   

The performance constraints include 

maximum runway length constraints and a 

constraint on the maximum approach speed. The 

runway length constraints are meant to 

guarantee that the aircraft will be able to operate 

out of a sufficient number of paved airfields 

around the world. From Figure 4 it can be seen 

that the global number of paved runways 

decreases quite rapidly for lengths exceeding 

2,437 m (approximately 8,000 ft)
4
. It would be 

nice for the aircraft to be able to utilize the 

maximum number of runways, however, at a minimum the aircraft needs to be able to operate out of the large, major 

airports. Thus, the upper bound on runway length was set to 11,000 ft. 

Table 4. Optimization output constraints 

 

Type Variable Name Min Max

 
e sc t Take-off Field Length (ft) TOFL 11,000

n na i

m arr ts Landing Field Length (ft) LANDFL 11,000

of nr oe CP Approach Speed (kts) APPSPD 155

y
 stti nl i Approach Angle of Attack (deg) AANGLA 12

i ab ri ts sa n Fuel Volume Ratio 

e o FRATIO 1.0

F C (available/required)
 l

at s

n t Delta Sideline Noise SNOISE 10
ne

m

i
ar

n t Delta Flyover Noise FNOISEs 10

or ni
v

n C
o

E Delta Approach Noise ANOISE 10

The approach speed of the aircraft was 

selected as a constraint because it 

etermines the approach category. 

onstraining the approach speed to 155 

ots ensures that the aircraft will be 

ategory D or lower which sets an upper 

ound on the landing distance and circling 

dius.
5
 

Approach angle of attack and fuel 

lume ratio are simply feasibility 

nstraints that ensure that the aircraft has 

fficient internal volume and does not 

all on takeoff or landing. While the 

erformance constraints are somewhat 

bjective, violating either of these 

nstraints would result in an inoperable 

rcraft. 

 have a significant effect on the aircraft 

ranslation variables were included in the 

le thrust coefficient, cannot be explicitly 

ameters at the center of the RSEs.  

 objective function for optimization. Due 

r mile was weighted most heavily. Fuel 

fects on operating costs and acquisition. 

 effect on cost and profits. Each objective 

onautics 

d

C

kn

C

b

ra

vo

co

su

st

p

su

co

ai

Although, as shown in Figure 6, some of the engine parameters can

performance, in order to simplify the problem only the 12 geometry and t

design vector. Additionally, some of the engine parameters, such as nozz

chosen by the designer. Accordingly, the engine variables were fixed as par

IV. Optimization 

The weighted sum approach shown in Eq. (2) was used to generate the

to its direct impact on profitability, average yield per revenue passenge

weight and acquisition cost were weighted next heavily based on their ef

Finally, take-off gross weight was weighted the least because of its indirect

was also scaled based on the baseline configuration to be �(1). 

 

 
Figure 4. Number of worldwide paved airports by length
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A. Design Space Exploration 
Because of the relatively large size of the design vector, a Latin Hypercubes experiment was conducted on the 12 

design variables as an initial exploration of the design space. 10,000 levels were used in the experiment; however, 
only three of the evaluations yielded configurations that satisfied all of the output constraints. In particular, each 
invalid design violated the take­off length and/or the approach noise constraints. The three feasible configurations 
from the experiment as well as the best designs for each of the individual objectives (including infeasible designs) 
are presented in Figure 5. 

TOGW DPRPM


FUELWT ACQCST 
(a) (b) 

Figure 5. (a) Feasible configurations and (b) best configurations for each objective 
The lack of feasible designs implies a highly constrained design space. Such design spaces are often difficult to 

optimize as gradient methods can become stuck in local minima or islands of feasibility and heuristic methods must 
to be able to deal with frequent constraint 
violation. 

XWING 
As an additional means of 

XHT 
understanding the design space, the main 
effects of each variable and parameter XVT 

were computed from the first order X1LEKN 

coefficients in the RSE’s Figure 6 shows a X2LETP 

normalized plot of these effects. Based on X3TETP 

this information, it appears that the X4TEKN ACQCST*10^-2 

leading edge kink location and the leading X5TERT FUELWT*10^-6 
edge tip location have the greatest Y1KINK 

DPRPM*10 
influence on the objective outputs. WGAREA 

TOGW*10^-6 
HTAREA 

B. Gradient Based Optimization VTAREA 

Since the objective function is CFG 
modeled by a response surface, gradient 

TIT 
methods should be very efficient and 

BPR 
converge quickly to the optimal design. 

OPR 
Due to its ability to handle nonlinearities, 
its potential for fast convergence, its 

FANMN 

suitability for long running simulations, FPR 

and its widespread acceptance and use in ETR 

engineering problems, Sequential SAR 

Quadratic Programming (SQP) was TOTM 

selected as the initial gradient optimizer. FNWTR 

The optimization was implemented by 
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 

means of MATLAB’s fmincon function. 
Figure 6. Normalized main effects. 
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The initial convergence tolerance was set to 1e­6 on both the constraints and the objective function. The seven 
designs shown in Figure 5 from the Latin Hypercubes experiment were used as staring points for the optimization. 
Although each optimization converged very quickly, the optimized designs did not show significant improvement 
over their respective starting points. Similarly, each starting point resulted in a different optimal design. 

Constraint tolerances were increased to 1e­12 and the maximum step size was decreased in an attempt to 
mitigate the potential effects ill conditioned constraints. However, the results did not show significant improvement. 
These features confirm the results of the Latin Hypercubes experiment in that the design space is highly constrained 
with islands of feasibility and numerous local optima on the constraint boundaries. Such problems are often better 
suited to heuristic optimization techniques. 

C. Heuristic Optimization 
A simulated annealing method was implemented in MATLAB as a second optimization technique. Simulated 

annealing allows the optimization to escape local minimums while the 
temperature is high, but then capitalizes on the low curvature and 
smoothness of the RSEs by performing similar to a gradient method as 
the temperature cools. The initial temperature for the optimization was 
set to 150 and an exponential cooling schedule with a decay rate of 

Table 5. SA optimal design configuration. Active constraints in 
red. 

Figure 7. SA optimal design geometry. 
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VT 

HT 

0.95 was used. The design perturbation was 
configured such that four variables were 
perturbed at each iteration. The perturbation 
magnitude and direction were selected randomly 
from a normal distribution with a standard 
deviation of one third of the allowable range of 
each variable. Variables that exceeded the input 
constraints were reset to the boundary. 
Constraints were handled by a quadratic penalty 
function where the penalty was set to 1e5. 

Although runtimes were significantly longer, 
the SA optimization yielded much more stable 

Type Variable Value Min Max 

T
ra

n
sl

a
ti

o
n

V
a

ri
a

b
le

s Wing Apex (ft) 

Horizontal Tail Apex (ft) 

Vertical Tail Apex (ft) 

25 

82.5 

84.5 

25 

82 

82 

28 

87.4 

86.4 

P
la

n
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rm
 G

e
o

m
e

tr
y

 V
a

ri
a

b
le

s 

Leading Edge Kink X-Location 

Leading Edge Tip X-Location 

Trailing Edge Tip X-Location 

Trailing Edge Kink X-Location 

Trailing Edge X-Location 

Kink Y-Location 

Wing Area (ft
2
) 

Horizontal Tail Area (ft
2
) 

Veritical Tail Area (ft
2
) 

1.54 

2.1 

2.58 

2.36 

2.26 

0.58 

9011 

700 

350 

1.54 

2.1 

2.4 

2.19 

2.19 

0.44 

8500 

400 

350 

1.69 

2.36 

2.58 

2.36 

2.5 

0.58 

9500 

700 

550 

Table 6. SA optimal design outputs. Active 
constraints in red. 

Type Output Optimized 

C
o

st

Average Yeild per Revenue 

Passenger Mile ($/mi) 

Acquisition Cost (Million $) 

0.1584 

260.47 

P
e

rf
o

rm
a

n
ce

 Take-off Gross Weight (lbs) 

Fuel Weight (lbs) 

Take-off Field Length (ft) 

Landing Field Length (ft) 

Approach Speed (kts) 

832,412 

438,237 

10,872 

8,485 

143.9 

F
e

a
si

b
il
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y

 

Approach Angle of Attack (deg) 

Fuel Volume Ratio 

(available/required) 

10.43 

1.35 

E
n

v
ir

o
n

m
e

n
ta

l 

Delta Sideline Noise 

Delta Flyover Noise 

Delta Approach Noise 

9.21 

9.92 

8.54 

Optimized 

Feasible 1 

Feasible 2 

Feasible 3 

Figure 8. Optimal design improvement. 
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3
0
0

3
0
0

solutions than the gradient method. Solutions started from multiple locations consistently converged to the design 
shown in Figure 7 and described by Table 5. Although global optimization is not guaranteed, this consistency over 
multiple runs with random variable perturbation started from different a different seed point each run gives 
increased confidence that this is a global optimum. The outputs at the optimized design are presented in Table 6. At 
the optimized design, the objective function value is 0.3827. 

As expected, the solution is highly constrained. 8 of the 12 input constraints are active and 2 of the 9 output 
constraints are active. 

Comparing the optimized design to the three feasible starting points, as in Figure 8, shows a 20% or greater 
reduction in the objective function value. Furthermore, in addition to improving the overall objective function, the 
optimized solution improves on all of the individual objectives except for acquisition cost. 

D. Multiobjective Optimization 
Since the weights in the objective function were chosen with limited input from potential buyers or users, it is 

important to take a step back and look at the optimization from a multiobjective perspective. As a first step in this 
process, simulated annealing was used to solve for the optimal design using each of the individual objectives as the 
objective function. Figure 9 shows the optimized geometries. It can be seen that the minimum takeoff gross weight 
and minimum acquisition cost designs are very similar. This correlation is expected and, to some extent, helps to 
further validate the model. It is also interesting to note that the optimal design from the previous section resembles 
the minimum fuel weight design. 

Min TOGW 
TOGW: 825,974 FUELWT: 484,575 
DPRPM: 0.1519 ACQCST: 267.0 

Min FUELWT 
TOGW: 832,765 FUELWT: 438,856 
DPRPM: 0.1583 ACQCST: 265.0 

Max DPRPM 
TOGW: 932,407 FUELWT: 517,315 
DPRPM: 0.1645 ACQCST: 264.1 

Min ACQCST 
TOGW: 826,734 FUELWT: 487,553 
DPRPM: 0.1515 ACQCST: 255.7 
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Figure 9. Single objective optimized designs. 

Of the individual objectives, minimum take­off gross weight, minimum acquisition cost, and minimum weight 
are all mutually supporting objectives. The trades occur with these objectives and maximum average yield per 
revenue passenger mile. In order to understand this trade, a Pareto front estimate shown in Figure 10 was 
constructed for take­off gross weight and average yield per revenue passenger mile. The Pareto front estimate was 
constructed using simulated annealing and a weighted sum method, as in Eq. (3), and later improved with an 
adaptive weighted sum method to fill in some gaps. 

���� ()*)+ 
� = � − (1 − �) (3) 

��				 	.�, 
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The lack of pronounced convexity in the Pareto front near the middle of the design space means that optimal 
designs in this region will be highly susceptible to changes in the weighting. 

Figure 10. Pareto front estimate for take­off gross weight and average yield per revenue passenger mile. 

E. Post Optimality 
Using the RSE’s, the sensitivity of the solution to each of the design variables and engine parameters at the 

optimal design point was computed and graphed in Figure 11. Of the geometry and translation variables, the 
sensitivity plot shows that the objectives are highly sensitive to the longitudinal leading edge king location, 
longitudinal trailing edge kink location, and span wise kink location. Accordingly, these are all active input 
constraints that restrict the design space. 

V. Conclusions and Recommendations 
Although an optimal design was selected, the limitations imposed on the optimization make it difficult to 

recommend this design as the final iteration. More study is needed to refine the design and increase confidence in it. 

A. Model 
Due to the lack of insight into the higher fidelity model underlying the response surfaces, additional data is 

needed to fully validate this model. Because of the unique design space encompassed by the SSBJ, a system level 
validation may not be possible. However, at the least, each subsystem in the high fidelity model should be validated 
against know data. Furthermore, the response surface should be evaluated against the high fidelity model at points 
not included in the regression in order to ensure that the model provides a good fit for the underlying data. It may be 
helpful to increase the response surfaces to quadratic functions in order to provide more ability to fit the curvature of 
the high fidelity model. 

Because the response surfaces mask the multidisciplinary aspects of the model, it is impossible to determine the 
assumptions that were made in creating the model. This lack of knowledge significantly restricts the value of the 
optimization since confidence in optimized designs cannot be evaluated based on their true compliance with 
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underlying assumptions. 
Similarly, certain parameter 
such as speed and altitude that 
are not known from the RSE 
models would be useful in the 
selection of objectives. For 
example, acquisition cost may 
be less important for a faster 
aircraft than it would be for a 
slower aircraft. 

Additionally, the model 
could be improved to include 
additional performance metrics 
and constraints that are not 
explicitly considered. Stability 
analysis would provide a good 
additional constraint. Direct 
emissions calculations, range, 
altitude, speed, and drag 
profiles would also be useful 
objectives as the aircraft must 
be able to meet certain 
performance requirements in 
order to be feasible in the 
business jet market.1 

In its current state, the 
model is very low fidelity. 
Additionally, the restricted 
domain of the RSEs limits the 

Figure 11. Normalized sensitivity plot at optimal design point optimization results. Since 
extrapolation yields poor 

results, the optimization is unable to take advantage of the entirety of the available design space. Further refinement 
of the model at the optimal design point is recommended. Updating the RSE at the optimal design point could allow 
for the input constraints to be relaxed which, due to the highly constrained nature of the solution, could lead to a 
substantially better design. 

B. Problem Formulation 
Although they were neglected in this study, it is clear that the engine parameters have a significant effect on the 

aircraft performance. It is recommended that these parameters be included in future studies. In particular, the 
objectives appear to be most sensitive to bypass ratio, overall pressure ratio, and fan pressure ratio. 

It has been shown that the feasible deign space is highly restricted by the output constraints. Accordingly, it may 
also be useful to reconsider the output constraints. In particular, the take­off length and approach noise were the 
most limiting of the output constraints. While these may be hard constraints, if they could be relaxed it would 
significantly open up the feasible solution space and allow for better designs. Alternatively, the noise constraints 
could be converted to objectives depending on exactly how aircraft noise is regulated. 

C. Optimization 
Gradient methods, such as SQP, are well suited to RSE’s like the system model used here. However, the highly 

constrained design space prohibits such methods from reaching the global optimum. Since it converges very quickly, 
the SQP could be started from many locations in the design space in the hopes of obtaining the global minimum in 
one of the runs. However, as demonstrated by the Latin Hypercubes experiment, even finding a feasible region can 
be quite difficult. In contrast, simulated annealing is able to move past local minimums to locate the global 
optimum, but it takes much longer than SQP and becomes very inefficient near the optimal point. 
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These characteristics suggest the use of a hybrid approach in which the SA method is used for several cooling 
cycles to locate the region of the design space containing the global optimum. Once this region has been located, the 
SA would pass the optimization to a gradient, SQP solver to quickly converge on the optimized solution 
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