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“An experiment 1s simply a question put to nature ...
The chief requirement is simplicity: only one question
should be asked at a time.”

Russell, E. J., 1926, “Field experiments: How they are made and what
they are,” Journal of the Ministry of Agriculture 32:989-1001.



“To call in the statistician after the
experiment Is done may be no more
than asking him to perform a post-
mortem examination: he may be able
to say what the experiment died of.”

- Fisher, R. A., Indian Statistical Congress, Sankhya, 1938.



Estimation of Factor Effects

Say the independent (bc) (abc)
experimental error of i

observations

(a), (ab), et cetera is o,

We define the main effect
estimate A to be

-(1{ A (@)
A== [(abo) + (ab) + (ac) + 2) - (0) ~(©) - (bc) ~ (V]

The standard deviation of the estimate is

o, = i\@gg _ lﬁag A factor of two improvement in
4 2 efficiency as compared to
“single question methods”



Fractional Factorial Experiments

“It will sometimes be advantageous
deliberately to sacrifice all possibility of
obtaining information on some points, these
being confidently believed to be unimportant
... These comparisons to be sacrificed will be
deliberately confounded with certain elements
of the soil heterogeneity... Some additional
care should, however, be taken...”

Fisher, R. A., 1926, “The Arrangement of Field Experiments,”
Journal of the Ministry of Agriculture of Great Britain, 33: 503-513.



Fractional Factorial Experiments




Fractional Factorial Experiments

Trial A B C D E F G FG=-A
1 -1 -1 -1 -1 -1 -1 -1 +1
2 -1 -1 -1 +#1 +1 +1 +1 +1
3 -1 +1 +1 -1 -1 +1 +1 +1
4 -1 +1 +1 +1 +1 -1 -1 +1
5 +1 -1 +1 -1 +1 -1 +1 -1
6 +1 -1 +1 +1 -1 +1 -1 -1
7 +1 +1 -1 -1 +1 +1 -1 -1
38 +1 +1 -1 +1 -1 -1 +1 -1

274 Design (aka “orthogonal array”)
Every factor is at each level an equal number of times (balance).
High replication numbers provide precision in effect estimation.
Resolution Ill.



Robust Parameter Design

Robust Parameter Design ... 1s a statistical /
engineering methodology that aims at reducing
the performance variation of a system (i.e. a
product or process) by choosing the setting of
Its control factors to make It less sensitive to
noise variation.

Wu, C. F. J. and M. Hamada, 2000, Experiments: Planning, Analysis, and
Parameter Design Optimization, John Wiley & Sons, NY.
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Step 4 Summary:
* Determine control factor levels
» Calculate the DOF

* Determine if there are any interactions
» Select the appropriate orthogonal array
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Step 4
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Assign Noise
Factors to Outer
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Step 6

Conduct
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Step 8

Predict and
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Majority View on “One at a Time”

One way of thinking of the great advances of the
science of experimentation In this century is as
the final demise of the “one factor at a time”
method, although it should be said that there are
still organizations which have never heard of
factorial experimentation and use up many man
hours wandering a crooked path.

Logothetis, N., and Wynn, H.P., 1994, Quality Through Design: Experimental
Design, Off-line Quality Control and Taguchi'’s Contributions, Clarendon
Press, Oxford.



Minority Views on “One at a Time”

“...the factorial design has certain deficiencies ... It devotes
observations to exploring regions that may be of no
interest... These deficiencies ... suggest that an efficient
design for the present purpose ought to be sequential;
that is, ought to adjust the experimental program at
each stage in light of the results of prior stages.”

Friedman, Milton, and L. J. Savage, 1947, “Planning Experiments
Secking Maxima”, in Techniques of Statistical Analysis, pp. 365-372.

“Some scientists do their experimental work in single steps.
They hope to learn something from each run ... they see
and react to data more rapidly ...If he has in fact found out
a good deal by his methods, it must be true that the effects
are at least three or four times his average random error

per trial.” Cuthbert Daniel, 1973, “One-at-a-Time Plans”, Journal of the
American Statistical Association, vol. 68, no. 342, pp. 353-360.



My Observations of Industry

—arming equipent company has reliability problems

_arge blocks of robustness experiments had been
nlanned at outset of the design work

More than 50% were not finished

Reasons given
— Unforseen changes “Well, in the third experiment, we

— Resource pressure found a solution that met all our
o needs, so we cancelled the rest
— Satisficing of the experiments and moved on

to other tasks...”




More Observations of Industry

Time for design (concept to market) Is going down
Fewer physical experiments are being conducted
Greater reliance on computation / CAE

Poor answers in computer modeling are common
— Right model — Inaccurate answer
— Right model — No answer whatsoever

— Not-so right model — Inaccurate answer
« Unmodeled effects
 Bugs in coding the model



Human Subjects Experiment

» Hypothesis: Engineers using a flawed simulation
are more likely to detect the flaw while using
OFAT than while using a more complex design.

« Method: Between-subjects experiment with
human subjects (engineers) performing parameter
design with OFAT vs. designed experiment.
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« Adaptive OFAT

— One factor changes in
each trial

e Plackett-Burman L8

— Four factors change
between any two trials

Using a 27 system avoids possible confounding factor of number of trials.
Increasing number of factors likely means increasing discrepancy in detection.
Larger effect sizes require fewer test subjects for given Type | and Il errors.



Parameter Design of Catapult to Hit Target

 Modeled on XPult™

« Commonly used in
DOE demonstrations

« Extended to 27 system
by introducing
— Arm material
— Alr relative humidity
— AlIr temperature




Control Factor

Control Factors and Settings

Nominal Setting

Alternate Setting

Relative Humidity
Pullback

Type of Ball

Arm Material
Launch Angle
Rubber Bands

Ambient
Temperature

25%

30 degrees

Orange (Large-ball TT)
Magnesium

60 degrees

3

72F

75%

40 degrees

White (regulation TT)
Aluminum

45 degrees

2

32F

50

45 1

40 1

35T

30 T

25 1

20 T

T 100

T 80

T 60

mmm Effect Size
—e— Cumulative Percent

1 40

T 20

Control factor tied directly to
simulation mistake

Arm material selected for its
moderate effect size

Computer simulation equations
are “correct”, but intentional
mistake is that arm material
properties are reversed

Control factor ordering is not
random, to prevent variance due
to learning effect

“Bad” control factor placed in 4
column in both designs



Results of Human Subjects Experiment
Pilot with N =8

Study with N =55 (1 withdrawal)

External validity high
— 50 full time engineers and 5 engineering students
— experience ranged from 6 mo. to 40+ yr.

Outcome measured by subject debriefing at end

Method Detected Not detected | Detection Rate (95% CI)
OFAT 14 13 (0.3195,0.7133)
PBLS 1 26 (0.0009,0.1897)




Adaptive OFAT Experimentation

Do an experiment
If there is an improvement,

Change one factor / retain the change

s {

<€ If the response gets worse, go
back to the previous state

+

C& Stop after you’ve changed
- every factor

Frey, D. D., F. Engelhardt, and E. Greitzer, 2003, “A Role for One Factor at a Time
Experimentation in Parameter Design”, Research in Engineering Design 14(2): 65-74.



Empirical Evaluation of
Adaptive OFAT Experimentation

* Meta-analysis of 66 responses from
published, full factorial data sets

* When experimental error is <25% of the
combined factor effects OR interactions
are >259% of the combined factor
effects, adaptive OFAT provides more

Improvement on average than fractional
factorial DOE.

Frey, D. D., F. Engelhardt, and E. Greitzer, 2003, “A Role for One Factor at a Time
Experimentation in Parameter Design”, Research in Engineering Design 14(2): 65-74.



Detalled Results

o=01/MS_ c=04,/MS;.

. ...'

OFAT/FF

Gray If OFAT>FF

Strength|of Experimental Error
0.3 0.4 0.5 0.6 0.7

Mild
Moderate
Strong

Dominant

96/90 | 95/90 | 93/89 | 90/88 | 86/86 | 83/84 | 80/81 | 76/81 | 72/77 | 69/74 | 64/70
86/67 | 85/64 | 82/62 | 79/63 | 77/63 | 72/64 | 71/63 | 67/61 | 64/58 | 62/55 | 56/50
80/39 | 79/36 | 77/34 | 75/37 | 72/37 | 70/35 | 69/35 | 64/34 | 63/31 | 61/35 | 59/35

Strength

Interaction




A Mathematical Model of Adaptive OFAT

Initial observation —— O, = y(>~<1,>72,-.->~<n)

observation with —— O, =y(-%.%,,...X,)
first factor toggled

first factor set — X =Xsign{0, -0, }

e X ,—xi,xm,...xn)

i-1

repeat for all 0, =y
remaining factors X = Xsignimax(0,,0;,...0, ;) O}

process ends after n+1 observations with E[y(Xf, Xg5e: X )]

Frey, D. D., and H. Wang, 2006, “Adaptive One-Factor-at-a-Time Experimentation
and Expected Value of Improvement”, Technometrics 48(3):418-31.



A Mathematical Model of a
Population of Engineering Systems

Y K%)= Y B+ 3 Y BX +8k

/ I= =1l j=i+l
system / / 2\
response O O,

2
pi ~ N(O’GME i ~ N O U”\.T experlmenta
main effects two-factor interactions error
y — the largest response within the space
max

of discrete, coded, two-level factors X; € {— 1,+1}

Model adapted from Chipman, H., M. Hamada, and C. F. J. Wu, 2001, “A Bayesian Variable Selection
Approach for Analyzing Designed Experiments with Complex Aliasing”, Technometrics 39(4)372-381.



Probabllity of Exploiting an Effect

« The it main effect is said to be “exploited” if

Bx >0

 The two-factor interaction between the ith and

.th . . (11 . ”»”
Ji" factors is said to be “exploited” if ﬂijxi*xjj>0

* The probabilities and conditional probabilities
of exploiting effects provide insight into the
mechanisms by which a method provides
Improvements



The Expected Value of the Response
after the First Step
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Probability of Exploiting the First Main Effect

O've

Pr(ﬂle >O)=%+%sin1 -
2

\/O'MEz +(n —1)0'|NT2 +20-g

] T o oo =01
If interactions are " Simton %/ =1
small and error is N "+ simiaion /e =10
not too large, | e
OFAT will tend to
exploit main
effects




The Expected Value of the Response After
the Second Step

E(Y(%. %, %o, %)) = 2E[Bx |+ 2(n = 2)E |, x|+ E|B, %%,

2
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Probabillity of Exploiting the First Interaction
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And it Continues

main two-factor interactions 1 I I I I T I I

effects < nk— g Legend
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- A%;A IX, O Simulation O-”\'T/UME 05 f
- A;A k zxé 0.6 |- .
B / 7 o
K — - n-k J/ ' 04~ N
( 2 J e
*\><i 02| .
(k—l]/ =
L
i O

Prog;xx; >0 2Pr g,xx, >0 ~_

We can prove that the probability of exploiting interactions is sustained.

Further we can now prove exploitation probabillity is a function of j only
and increases monotonically.
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Final Outcome
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Adaptive “One Factor at a Time” for
Robust Design

Run a resolution I Again, run a resolution Il on
on noise factors noise factors. If there is an

Improvement, in transmitted
Change . .
variance, retain the change

one factor
o L——>bt0 |
a4i t A S C If the response gets worse,
T b L] T go back to the previous state
Cocare N
B|
C . r--mmm-r -3 Stop after you've changed
- every factor once
A

Frey, D. D., and N. Sudarsanam, 2007, “An Adaptive One-factor-at-a-time Method for Robust Parameter Design:
Comparison with Crossed Arrays via Case Studies,” accepted to ASME Journal of Mechanical Design.



Sheet Metal Spinning

Blank supporting tool

Spinning pass

_Ci'.l.'cular blank

Results for Three Methods of Robust Design Applied to
the Sheet Metal Spinning Model

-4 T T T T T T
Maximum S/N

Roller tool

aOFAT x 23_1 Informed

Tailstock Spinning mandrel

Spun workpiece

Image by MIT OpenCourseWare.

Smaller-the-better signal to noise ratio (dB)

3-1
-10 - Largest noise  Largest control aOFAT x 2° ~ Random .
effect effect
11 - 4
Average S/N
-2 L1 \ 1 A 1 1 1 1
0 0.5 1 1.5 2 25 3

Standard deviation of pure experimental error (mm?)

Image by MIT OpenCourseWare.



Paper Airplane

MIT Design of Experiments Exercise v2.0

B1 (up)

Parameter B: B2 (flat)
Stabilizer Flaps gq (down)

Parameter A:
' A1 Weight Position ' A2

# A B C D

1 Al Bl C1l D1
2 Al B2 C2 D2
3 Al B3 C3 D3
4 A2 Bl C2 D3
o) A2 B2 C3 D1
6 A2 B3 C1l D2
7 A3 Bl C3 D2
8 A3 B2 Cl D3
9 A3 B3 Cc2 D1

41

40

39

38

37

Resul

ts for Three Methods of Robust Design Applied to
the Paper Airplane Physical Experiment

T T T T T
Maximum signal to noise ratio

aOFAT x 2°™ Informed
- P— @ @ ) A O

Q. @ L SRR @

P §-==m Qe R ga— g "
TO L O

"""" Oo

T ------------ o
T aOFAT x 2°*Random
L9x 2"

K Average signal-to-noise ratio _
| Combined effects of noise Largest control factor effect —
l ' l l l
O L L 20 40 50

Standard deviation of pure experimental error (inches)

Image by MIT OpenCourseWare.




Results Across Four Case studies

aOFAT x 2K P
Fractional array x 2%, P
Informed Random

Sheet metal Low € 51% 75% 56%
Spinning High € 36% 57% 52%

Low & 99% 99% 98%
Op amp

High ¢ 98% 88% 87%

Low ¢ 43% 81% 68%
Paper airplane

High ¢ 41% 68% 51%

Low ¢ 94% 100% 100%
Freight transport -

High e 88% 85% 85%

Low ¢ 74% 91% 84%
Mean of four cases

High ¢ 66% 70% 64%

Low e 43% to 99% 75% to 100% 56% to 100%
Range of four cases :

High ¢ 36% to 88% 57% to 88% 51% to 87%

Image by MIT OpenCourseWare.

Frey, D. D., N. and Sudarsanam, 2006, “An Adaptive One-factor-at-a-time Method for

Robust Parameter Design: Comparison with Crossed Arrays via Case Studies,” accepted to
ASME Journal of Mechanical Design.



Ensembles of aOFATs

100 T T T T 100 T T T T

90 - O - Ensemble aOFATS (4) , o0 -
O- Fractional Factorial 272

O - Ensemble aOFATS (8) .
O - Fractional Factorial 271

80~

70~

50 Expected Value of Largest Control Factor =16 | %or Expected Value of Largest Control Factor = 16
40 r r !‘l r 40 r r rl r
o 5 10 15 20 25 0 5 10 15 20 25
Comparing an Ensemble of 4 aOFATs with a 27-2 Comparing an Ensemble of 8 aOFATs with a 271

Fractional Factorial array using the HPM Fractional Factorial array using the HPM



Co

nclusions

A new model and theorems show that

— Adaptive OFA]
Interactions es

— Adaptive OFA]
of the benefits
design

" plans exploit two-factor
pecially when they are large

" plans provide around 80%
achievable via parameter

* Adaptive OFAT can be “crossed” with

factorial design
highly effective

s which proves to be

Frey, D. D., and N. Sudarsanam, 2007, “An Adaptive One-factor-at-a-time Method for Robust Parameter Design:
Comparison with Crossed Arrays via Case Studies,” accepted to ASME Journal of Mechanical Design.
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