

Multidisciplinary System Design Optimization (MSDO)

Approximation Methods

Karen Willcox

Slides from: Theresa Robinson, Andrew March

Outline

- Introduction to approximation methods
- Data fit methods
 - Polynomial response surfaces
 - Kriging
- Model order reduction
 - Reduced-basis methods
 - Proper orthogonal decomposition
- Multifidelity methods
 - Trust-region model management

Approximation Methods

- Replace the simulation with an approximation or "surrogate"
- Uses some data from the initial simulation
 - Can be global or local
- Surrogate is much less computationally expensive to evaluate
- Not just optimization
 - Uncertainty Quantification (e.g. Monte Carlo simulation methods)
 - Visualization

Why Approximation Methods

We have seen throughout the course the constant trade-off between **computational cost** and **fidelity.**



Approximation methods provide a way to get high-fidelity model information throughout the optimization without the computational expense.

Data Fit Methods

- Sample the simulation at some number of design points
 - Use DOE methods, e.g. Latin hypercube, to select the points
- Fit a surrogate model using the sampled information
- Surrogate may be global (e.g., quadratic response surface) or local (e.g., Kriging interpolation)
- Surrogate may be updated adaptively by adding sample points based on surrogate performance (e.g., EGO)

esdPolynomial Response Surface Method ESD.77

- Surrogate model is a local or global polynomial model
- Can be of any order
 - Most often quadratic; higher order requires many samples
- Advantages: Simple to implement, visualize, and understand, easy to find the optimum of the response surface
- Disadvantages: May be too simple, doesn't capture multimodal functions well

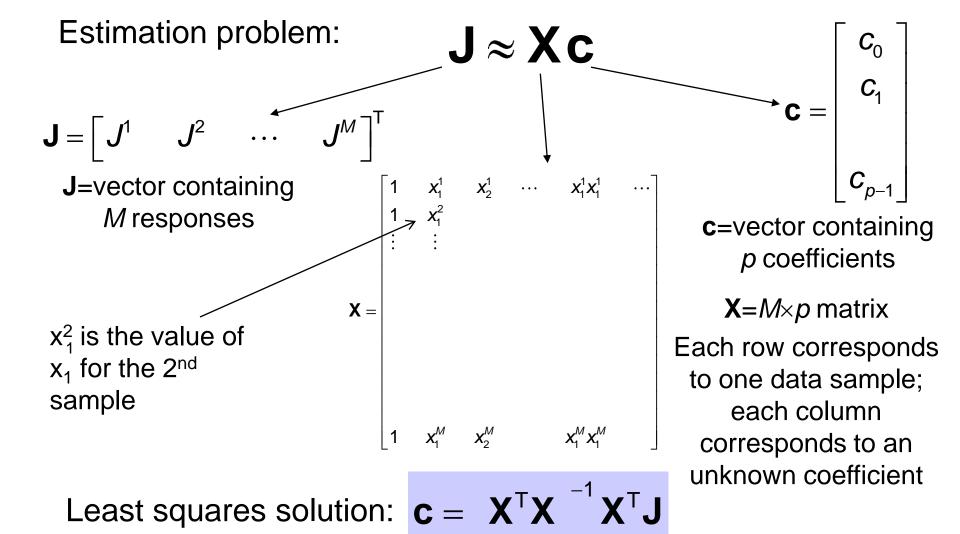
est Global Polynomial Response Surface

- Fit objective function with a polynomial
- e.g. quadratic approximation:

$$J(\mathbf{x}) = \mathbf{a_0} + \sum_{i} b_{i} x_{i} + \sum_{i} c_{ii} x_{i}^{2} + \sum_{i,j < i} c_{ij} x_{i} x_{j}$$

 Update model by including a new function evaluation then doing least squares fit to compute the new coefficients

Global Polynomial Response Surface



© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

Kriging

- Adopted from the geostatistics literature
- Based on Gaussian process models
- Assumes that the output function values are correlated in design space, i.e. closer points are more highly correlated
- Can have multiple extrema
- Interpolating method
 - Exact at sample points
- Gives estimate of mean squared error
 - Can use to give error bounds
 - Can use to choose new sample points

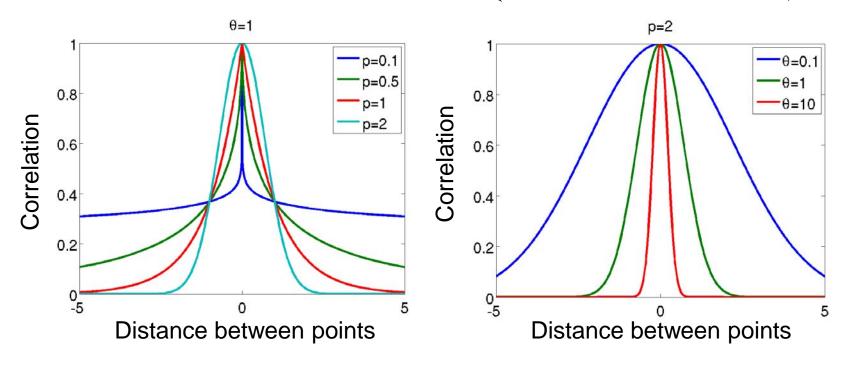
Vest Kriging: Mathematical Background

- We want to make a prediction of y at a point x
- Uncertain of value: model as a random variable, normally distributed with mean μ and variance σ^2
- Consider two points \mathbf{x}_i and \mathbf{x}_j
- Expect values to be close if the distance between them is small
- Formalize this idea by setting:

$$Corr[Y(x_j), Y(x_k)] = \exp\left(-\sum_{i=1}^n \theta_i |x_{ji} - x_{ki}|^{p_i}\right)$$

Kriging Basis Functions

$$Corr[Y(x_j), Y(x_k)] = \exp\left(-\sum_{i=1}^n \theta_i \left| x_{ji} - x_{ki} \right|^{p_i}\right)$$



Each p_i and θ_i is chosen to best fit the data

Kriging Mathematics Cont.

- Choose μ , p_i , and θ_i to maximize the likelihood of observing the data
 - Detailed equations in Giunta and Watson (1998), derivation in Jones (2001)
- Kriging predictor is

$$\hat{\mathbf{y}}(\mathbf{x}^*) = \mu + \sum_{i=1}^k c_i \exp\left(-\sum_{j=1}^n \theta_j |\mathbf{x}^* - \mathbf{x}_i|^{p_j}\right)$$

mean surface

weighted sum of Gaussians, each centered at a sample point

Kriging Extensions

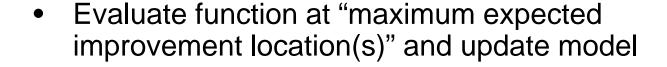
- Can combine polynomial RSM and Kriging
 - Apply Kriging to difference between sample values and polynomial approximation
- Soft Kriging allows upper and lower bounds, prior CDFs
- Efficient Global Optimization (EGO)
 - Uses Kriging to find "expected improvement"
 - Samples the point with the largest expected improvement and adds it to the sample set

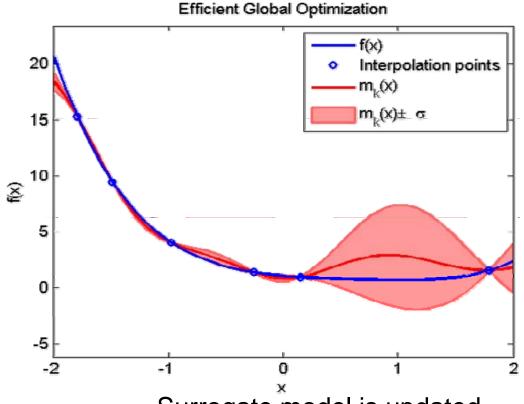
Efficient Global Optimization

- Jones 1998; based on probability theory
- Assumes:

$$f(\mathbf{x}) \approx \boldsymbol{\beta}^T \mathbf{x} + N(\mu(\mathbf{x}), \sigma^2(\mathbf{x}))$$

- $\beta^T \mathbf{x}$: regression term
- $N(\mu(\mathbf{x}), \sigma^2(\mathbf{x}))$: error from regression model is normally distributed, with mean $\mu(\mathbf{x})$ and variance $\sigma^2(\mathbf{x})$
- Estimate function values with a Kriging model
 - Predicts mean and variance





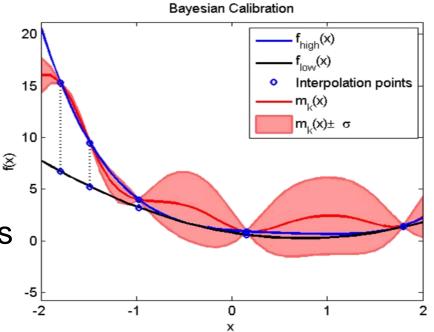
Surrogate model is updated adaptively; kth surrogate is

$$m_k(x) = {}^{1}(x) + {}^{-T}x$$

Bayesian Model Calibration

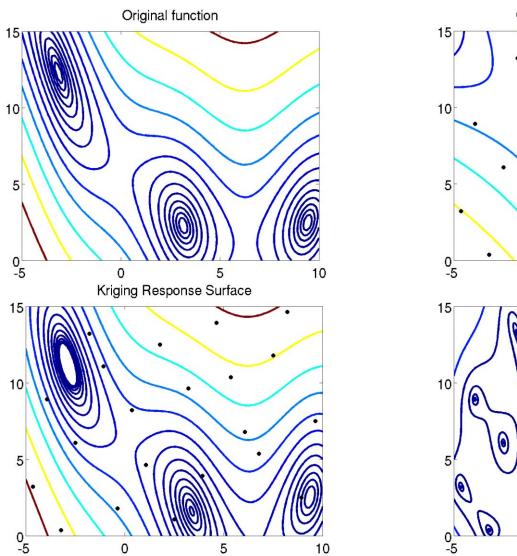
$$f_{high}(\mathbf{x}) \approx m_k(\mathbf{x}) = f_{low}(\mathbf{x}) + \varepsilon_k(\mathbf{x})$$

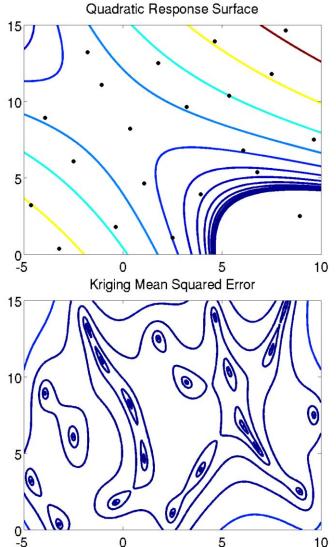
- Model the error between a high-fidelity and a low-fidelity function [Kennedy2000, 2001; Huang2006]
- If the low-fidelity function is "good", converges faster



Global calibration procedure

Comparison of Data Fit Methods



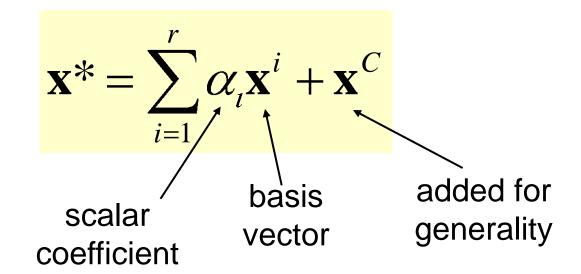


© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

Reduced-Basis Methods

Consider r feasible design vectors: \mathbf{x}^1 , \mathbf{x}^2 , ..., \mathbf{x}^r

We could consider the desired design to be a linear combination of these basis vectors:



Reduced-Basis Methods

We can now optimize $J(\mathbf{x})$ by finding the optimal values for the coefficients α_i .

dimension *n*

dimension r

- Do one full-order evaluation of resulting answer
- Approach is efficient if r << n
- Will give the true optimum only if x* lies in the span of {x'}
- Basis vectors could be
 - previous designs
 - solutions over a particular range (DoE)
 - derived in some other way (e.g., proper orthogonal decomposition)
 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Reduced-Basis Example

Example using a reduced-basis approach (van der Plaats Fig 7-2): airfoil design for a unique application.

- Many airfoil shapes with known performance are available
- Design variables are (x,y) coordinates at chordwise locations (n~100)
- Use four basis airfoil shapes (low-speed airfoils) which contain the n geometry points
- Plus two basis shapes which allow trailing edge thickness to vary
- *r*=6 (*r*<<*n*)
- Optimize for high speed, maximum lift with a constraint on drag

Reduced-Basis Example

From Vanderplaats Figs. 7-2 and 7-3, pg. 260

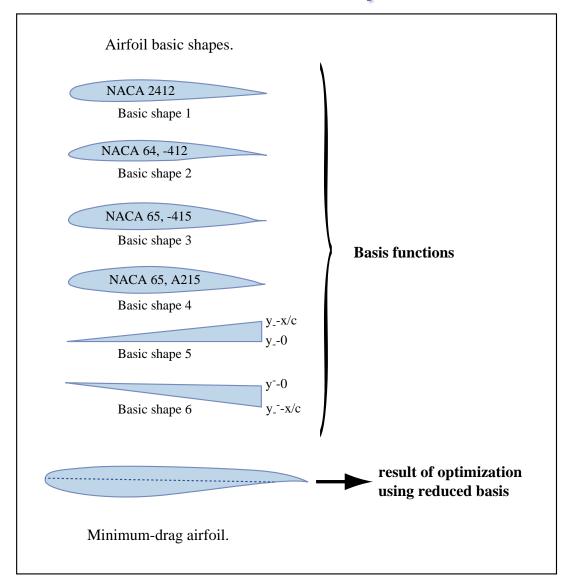


Image by MIT OpenCourseWare.

Mesa Proper Orthogonal Decomposition

(aka Karhunen-Loève expansions, Principal Components Analysis, Empirical Orthogonal Eigenfunctions, ...)

Consider K snapshots $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_K \in \mathbb{R}^n$ (solutions at selected times or parameter values)

Form the snapshot matrix $X = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_K]$

Choose the *n* basis vectors $V = [V_1 \ V_2 \cdots V_n]$ to be left singular vectors of the snapshot matrix, with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq \sigma_{n+1} \geq \cdots \geq \sigma_K$

This is the optimal projection in a least squares sense:

$$\min_{V} \sum_{i=1}^{K} ||\mathbf{x}_{i} - VV^{T}\mathbf{x}_{i}||_{2}^{2} = \sum_{i=n+1}^{K} \sigma_{i}^{2}$$

Multifidelity Methods

- Sometimes there is more than one model for the same system
 - e.g. Navier Stokes and thin-airfoil theory for wing design, finite-element and beam theory for structural design
- Low-fidelity model may provide good information over a wide range, at much lower computational cost
- Would like to find optimum of high-fidelity problem, but use low-fidelity model most of the time

A Hierarchy of Models

Images of Figure 1b, 4, and 8 removed due to copyright restrictions. Figures from: Choi, S, Alonso, JJ, Kim, S., Kroo, IM. Two-level multi-fidelity design optimization studies for supersonic jets. 43th AIAA Aerospace Sciences Meeting & Exhibit. January 2005.

Image of Low-fidelity EM and High fidelity EM models removed due to copyright restrictions.

West Trust-Region Model Management

- A rigorous method for determining when to use high-fidelity function calls
- Solves a series of subproblems:

Minimize
$$\hat{J}^k(\mathbf{x})$$
Subject to $\hat{g}^k(\mathbf{x}) \leq 0$
 $\left\|\mathbf{x} - \mathbf{x}_c^k\right\|_{\infty} \leq \Delta^k$

Several methods exist to handle the approximation of constraints.

 \mathbf{x}_{c}^{k} : center point of trust region at iteration k

 Δ^k : size of trust region at iteration k

Trust-Region Model Management

 Size of trust region updated depending on how well surrogate predicts high-fidelity function value

• Merit function
$$\Gamma[J(\mathbf{x}), g(\mathbf{x})]$$

Ratio of actual to predicted improvement:

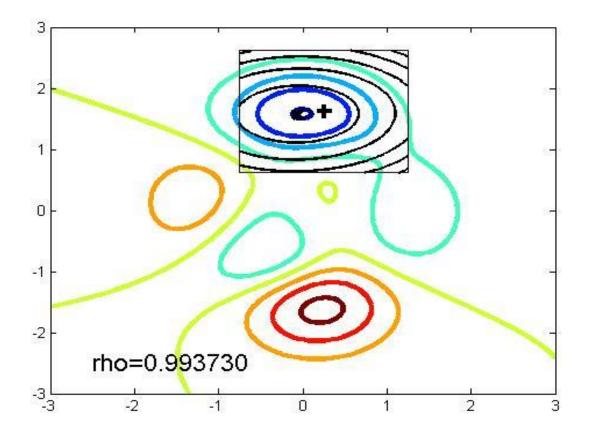
$$\rho^{k} = \frac{\Gamma(\mathbf{x}_{c}^{k}) - \Gamma(\mathbf{x}_{*}^{k})}{\Gamma(\hat{\mathbf{x}}_{c}^{k}) - \hat{\Gamma}(\mathbf{x}_{*}^{k})}$$

Trust-Region Model Management

Trust region size update rules:

$\rho^k \leq 0$	Reject step	$\Delta^{k+1} \equiv 0.5\Delta^k$
$0 < \rho^k \le 0.1$	Accept step	$\Delta^{k+1} \equiv 0.5\Delta^k$
$0.1 < \rho^k < 0.75$	Accept step	$\Delta^{k+1} \equiv \Delta^k$
$0.75 \le \rho^k$	Accept step	$\Delta^{k+1} \equiv 2\Delta^k$

Trust-Region Demonstration



Mesa Trust-Region Model Management

- Calls high-fidelity analysis once per iteration
- Calls surrogate analysis many times per iteration
- Provably convergent to local minimum of high fidelity function if surrogate is first-order accurate at center of trust region
- Extensions to the case of $\mathbf{x} \neq \hat{\mathbf{x}}$ in Robinson et al. (2008).
- Derivative-free approaches in Conn et al. (2009)

Corrections

- Include corrections in order to enforce consistency and gain provable convergence of trust-region approach
- Additive Correction:

$$\hat{J}(\mathbf{x}) = J_{lo}(\mathbf{x}) + \alpha(\mathbf{x})$$

Multiplicative Correction:

$$\hat{J}(\mathbf{x}) = J_{lo}(\mathbf{x})\beta(\mathbf{x})$$

surrogate model

low-fidelity model

Multifidelity Optimization

- Combines several elements:
 - Trust regions
 - Bayesian model calibration
 - Adaptive sampling
 - Surrogate models (e.g., interpolation models using Kriging)
 - Estimation theory

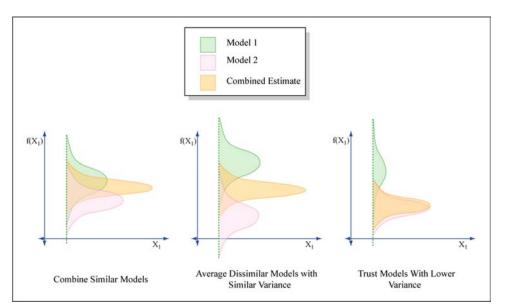
Active area of research

Combining Estimates of Multifidelity Models

- Use Kalman filtering approach to compute combine estimate
- Maximum likelihood estimate weights each model according to its variance (pay more attention to models in which we have more confidence)

$${}^{1}_{\text{est}}(\mathbf{x}) = {}^{1}_{\text{med}}(\mathbf{x}) \frac{{}^{3}\!\!/_{\text{low}}(\mathbf{x})}{{}^{3}\!\!/_{\text{low}}(\mathbf{x}) + {}^{3}\!\!/_{\text{med}}(\mathbf{x})} + {}^{1}_{\text{low}}(\mathbf{x}) \frac{{}^{3}\!\!/_{\text{med}}(\mathbf{x})}{{}^{3}\!\!/_{\text{low}}(\mathbf{x}) + {}^{3}\!\!/_{\text{med}}(\mathbf{x})}$$

$$\frac{1}{{}^{3}\!\!/_{\text{est}}(\mathbf{x})} = \frac{1}{{}^{3}\!\!/_{\text{low}}(\mathbf{x})} + \frac{1}{{}^{3}\!\!/_{\text{med}}(\mathbf{x})} :$$



 Extends naturally to case with more than two models; much more efficient than nesting (March 2010)

Lecture Summary

- A number of ways to create approximations, or surrogates
- Each has its own area of application, advantages, and disadvantages
- Data fit surrogates
 - Polynomial response surfaces
 - Kriging
- Model order reduction
 - Reduced basis
 - Proper orthogonal decomposition
- Multifidelity methods

References

Alexandrov, N., Dennis, J.E., Lewis, R.M. and Torczon, V., "A trust region framework for managing the use of approximation models in optimization", NASA CR-201745, ICASE Report No. 97-50, October 1997.

Barthelemy, J-F. M. and Haftka, R.T., "Approximation concepts for optimum structural design – a review", *Structural Optimization*, 5:129-144, 1993.

Conn, A.R., Scheinberg, K. and Vicente, L., "Global Convergence of General Derivative-Free Trust-Region Algorithms to First- and Second-Order Critical Points," *SIAM Journal of Optimization*, Vol. 20, No.1, pp. 387-415, 2009.

Gill, P.E., Murray, W. and Wright, M.H., *Practical Optimization*, Academic Press, 1986.

Giunta, A.A. and Watson, L.T.,"A comparison of approximation modeling techniques: polynomial versus interpolating models", AIAA Paper 98-4758, 1998.

Jones, D.R., "A taxonomy of global optimization methods based on response surfaces," Journal of Global Optimization, 21, 345-383, 2001.

LeGresley, P.A. and Alonso, J.J., "Airfoil design optimization using reduced order models based on proper orthogonal decomposition", AIAA Paper 2000-2545, 2000.

March, A. and Willcox, K., "A Provably Convergent Multifidelity Optimization Algorithm not Requiring High-Fidelity Derivatives," AIAA-2010-2912, presented at 3rd MDO Specialist Conference, Orlando, FL, April 12-15, 2010.

Robinson, T., Willcox, K., Eldred, M., and Haimes, R. "Multifidelity Optimization for Variable-Complexity Design," *AIAA Journal*, Vol.46, No.11, pp. 2814-2822, 2008.

Vanderplaats, G.N., *Numerical Optimization Techniques for Engineering Design*, Vanderplaats R&D, 1999.

MIT OpenCourseWare http://ocw.mit.edu

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.