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Lecture Content

• Why multiobjective optimization?

• Example – twin peaks optimization

• History of multiobjective optimization

• Weighted Sum Approach 

• Pareto-Optimality

• Dominance and Pareto Filtering
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Multiobjective Optimization Problem 

Formal Definition
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Design problem may be formulated

as a problem of Nonlinear Programming (NLP). When

Multiple objectives (criteria) are present we have a MONLP
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Multiple Objectives
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The objective can be a vector J of z system responses

or characteristics we are trying to maximize or minimize

Often the objective is a

scalar function, but for

real systems often we 

attempt multi-objective

optimization: 

x J(x)

Objectives are usually

conflicting.
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Why multiobjective optimization ?

While multidisciplinary design can be associated with the 

traditional disciplines such as aerodynamics, propulsion, 

structures, and controls there are also the lifecycle areas of 

manufacturability, supportability, and cost which require 

consideration.

After all, it is the balanced design with equal or weighted 

treatment of performance, cost, manufacturability and 

supportability which has to be the ultimate goal of 

multidisciplinary system design optimization.

Design attempts to satisfy multiple, possibly

conflicting objectives at once.
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Example: 

F/A-18 Aircraft

Design

Decisions
Objectives

Aspect Ratio

Dihedral Angle

Vertical Tail Area

Engine Thrust 

Skin Thickness

# of Engines

Fuselage Splices

Suspension Points

Location of Mission

Computer

Access Door 

Locations

Speed

Range

Payload Capability

Radar Cross Section

Stall Speed

Stowed Volume

Acquisition cost

Cost/Flight hour

MTBF

Engine swap time

Assembly hours

Avionics growth

Potential
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Multiobjective Examples

Production Planning

max {total net revenue}

max {min net revenue in any time period}

min {backorders}

min {overtime}

min {finished goods inventory}

Aircraft Design

max {range}

max {passenger volume}

max {payload mass}

min  {specific fuel consumption}

max {cruise speed}

min  {lifecycle cost}

1

2

z

J

J

J

J
Design

Optimization

Operations

Research
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Multiobjective vs. Multidisciplinary

• Multiobjective Optimization
– Optimizing conflicting objectives

– e.g., Cost, Mass, Deformation 

– Issues: Form Objective Function that represents designer 
preference! Methods used to date are largely primitive.

• Multidisciplinary Design Optimization
– Optimization involves several disciplines

– e.g. Structures, Control, Aero, Manufacturing

– Issues: Human and computational infrastructure, cultural, 
administrative, communication, software, computing time, 
methods

• All optimization is (or should be) multiobjective
– Minimizing mass alone, as is often done, is problematic
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Multidisciplinary vs. Multiobjective

single discipline multiple disciplines
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single discipline multiple disciplines

Minimize displacement

s.t. mass and loading constraint

F

l

m
cantilever beam support bracket

Minimize stamping 

costs (mfg) subject

to loading and geometry

constraint

F

D

$

airfoil

(x,y)

Maximize CL/CD and maximize

wing fuel volume for specified vo

Vfuel

vo

Minimize SFC and maximize cruise

speed s.t. fixed range and payload 

commercial aircraft
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Example: Double Peaks Optimization

Objective:  max J= [ J1 J2]
T (demo)
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Double peaks optimization

Optimum for J1 alone: Optimum for J2 alone:

x1* =

0.0532

1.5973

J1* = 8.9280

J2(x
1*)= -4.8202

x2* =

-1.5808

0.0095

J1(x
2*)= -6.4858 

J2* = 8.1118

Each point x1* and x2* optimizes objectives J1 and J2 individually.

Unfortunately, at these points the other objective exhibits a low 

objective function value. There is no single point that simultaneously

optimizes both objectives J1 and J2 !
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Tradeoff between J1 and J2

• Want to do well with respect to both J1 and J2

• Define new objective function: Jtot=J1 + J2

• Optimize Jtot

Result:

Xtot* =

0.8731

0.5664

J(xtot*) =

3.0173     J1

3.1267     J2

Jtot* =  6.1439

=

max(J1)

max(J2)

tradeoff

solution

max(J1+J2)
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History (1) – Multicriteria Decision Making

• Life is about making decisions.  Most people attempt to make the 

“best” decision within a specified set of possible decisions.

• In 1881, King’s College (London) and later Oxford Economics 

Professor F.Y. Edgeworth is the first to define an optimum for 

multicriteria economic decision making.  He does so for the multiutility 

problem within the context of two consumers, P and :

– “It is required to find a point (x,y,) such that in 

whatever direction we take an infinitely small step, 

P and do not increase together but that, while one 

increases, the other decreases.”

– Reference: Edgeworth, F.Y., Mathematical Psychics,

P. Keagan, London, England, 1881.
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History (2) – Vilfredo Pareto

• Born in Paris in 1848 to a French Mother and Genovese 
Father

• Graduates from the University of Turin in 1870 with a 
degree in Civil Engineering

– Thesis Title: “The Fundamental Principles of Equilibrium in 
Solid Bodies”

• While working in Florence as a Civil Engineer from 1870-
1893, Pareto takes up the study of philosophy and politics 
and is one of the first to analyze economic problems 
with mathematical tools. 

• In 1893, Pareto becomes the Chair of Political Economy at 
the University of Lausanne in Switzerland, where he 
creates his two most famous theories:

– Circulation of the Elites

– The Pareto Optimum

• “The optimum allocation of the resources of a society is not 
attained so long as it is possible to make at least one 
individual better off in his own estimation while keeping 
others as well off as before in their own estimation.”

• Reference: Pareto, V., Manuale di Economia Politica, Societa 
Editrice Libraria, Milano, Italy, 1906.  Translated into English by 
A.S. Schwier as Manual of Political Economy, Macmillan, New 
York, 1971.
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History (3) – Extension to Engineering

• After the translation of Pareto’s Manual of Political Economy
into English, Prof. Wolfram Stadler of San Francisco State 
University begins to apply the notion of Pareto Optimality to the 
fields of engineering and science in the middle 1970’s.

• The applications of multi-objective optimization in engineering 
design grew over the following decades.

• References:

– Stadler, W., “A Survey of Multicriteria Optimization, or the Vector 
Maximum Problem,” Journal of Optimization Theory and 
Applications, Vol. 29, pp. 1-52, 1979.

– Stadler, W. “Applications of Multicriteria Optimization in Engineering 
and the Sciences (A Survey),” Multiple Criteria Decision Making –
Past Decade and Future Trends, ed. M. Zeleny, JAI Press, 
Greenwich, Connecticut, 1984.

– Ralph E. Steuer, “Multicriteria Optimization - Theory, Computation 
and Application”, 1985
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Notation and Classification

Ref: Ralph E. Steuer, “Multicriteria Optimization - Theory, Computation 

and Application”, 1985

Traditionally - single objective constrained optimization:

max

. .    

f

s t S

J x

x

   objective function

    feasible region

f J

S

x

If f(x) linear & constraints linear & single objective = LP

If f(x) linear & constraints linear & multiple obj. = MOLP

If f(x) and/or constraints nonlinear & single obj.= NLP

If f(x) and/or constraints nonlinear & multiple obj.= MONLP
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Design Space vs Objective Space

Xtot*

J(xtot*)

A function f which may (but does not necessarily) 

associate a given member of the range of f with 

more than one member of the domain of f. 

“Range”
“Domain”
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Formal Solution of a MOO Problem
Trivial Case:

There is a point                that simultaneously optimizes

all objectives 

*x S
,   where  1iJ i z

Such a point almost never exists - i.e. there is no point

that will simultaneously optimizes all objectives at once

Two fundamental approaches:

1 2max , , ,

. .       1 i z

       

z

i i

U J J J

s t J f

S

x

x

Scalarization 

Approaches
Pareto 

Approaches
1 2

1 2

        

and    for 

at least one 

i i

i i

J J i

J J

i

Preferences 

included upfront
Preferences 

included a posteriori
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SOLP versus MOLP

x1

x2

S

c1

x1*

x2*c2

constraints

Optimal solution

if only J1 considered

Optimal solution

if only J2 considered

What is the optimal

solution of a MOLP?1

2

max

max

. .    S

J

J
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1

2

c x

c x
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Weighted-Sum Approach

x1

x2

S
c1

x1

x2

c2

constraints

Each objective i is multiplied by a strictly positive scalar i

1

0, 1
k

z

i i

i

λ

x3*

Solve the

composite or

WSLP:

max ST
λ Cx xc3

1 2

3 1 2
c c + c

Strictly convex

combination

of objectives

criterion

cone

R
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Group Exercise: Weights (5 min)

We are trying to build the “optimal” automobile

There are six consumer groups:

-G1: “25 year old single” (Cannes, France)

-G2: “family w/3 kids” (St. Louis, MO)

-G3: “electrician/entrepreneur” (Boston, MA)

-G4: “traveling salesman” (Montana, MT)

-G5: “old lady” (Rome, Italy)

-G6: “taxi driver” (Hong Kong, China)

Objective Vector:

J1: Turning Radius [m]

J2: Acceleration [0-60mph]

J3: Cargo Space [m3]

J4: Fuel Efficiency [mpg]

J5: Styling [Rating 0-10]

J6: Range [km]

J7: Crash Rating [poor-excellent]

J8: Passenger Space [m3]

J9: Mean Time to Failure [km] 

Assignment:  Determine i , i =1…9
9

1

1000i

i
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What are the scale factors sfi?

• Scaling is critical in multiobjective optimization

• Scale each objective by sfi:

• Common practice is to scale by sfi = Ji*

• Alternatively, scale to initial guess J(xo)=[1..1]T

• Multiobjective optimization then takes place in 

a non-dimensional, unit-less space

• Recover original objective function values by 

reverse scaling

i i iJ J sf

Example: J1=range [sm]

J2=fuel efficiency [mpg]

sf1=573.5 [sm]

sf2=36 [mpg]

Saab 9-5

Suzuki “Swift”
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Weighted Sum: Double Peaks

1 21   where   [0,1]totJ J J

Demo:  At each setting of we solve a new single

objective optimization problem – the underlying

function changes at each increment of 

=0.05
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Weighted Sum Approach (II)

=1

=0

Weighted sum

finds interesting, 

solutions but misses

many solutions of

interest.
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Weighted Sum (WS) Approach

1

z
i

MO i
i i

J J
sf

Max(J1 /sf1)

Min(J2 /sf2)

miss this

concave region

Pareto 

front

• convert back to SOP

• LP in J-space

• easy to implement

• scaling important !

• weighting determines 

which point along PF is 

found

• misses concave PF

2> 1

1> 2

J-hyperplane
J*i

J*i+1

PF=Pareto Front(ier)

weight

scale

factor
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Properties of optimal solution

*optimal if  

for   and for  S

*

*

x  J x J x

x x x*

This is why multiobjective optimization is also

sometimes referred to as vector optimization

x* must be an efficient solution

Sx is efficient if and only if (iff) its objective vector

(criteria) J(x) is non-dominated

A point            is efficient if it is not possible to move feasibly

from it to increase an objective without decreasing at least

one of the others

Sx

(maximization)
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Dominance (assuming maximization)

Let                         be two objective (criterion) vectors.

Then  J1 dominates  J2 (weakly)  iff  

More 

precisely:

z1 2
J , J

1

2i

z

J

J
J

J
   and 1 2 1 2

J J   J J

1 2 1 2        and    for at least one i i i iJ J i J J i

Also  J1 strongly dominates J2 iff  

More 

precisely:
   1 2

J J
1 2         i iJ J i

R
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Set Theory

Set Theory:
D

ND

D ND

Sx

J

Z

,D Z ND Z

D ND Z

J*

ND*
J x*

A solution must be feasible

A solution is either dominated or non-dominated

but cannot be both at the same time

All dominated and non-dominated

solutions must be feasible

All feasible solutions are either non-dominated

or dominated

Pareto-optimal solutions are non-dominated

ZJ,J*
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• Can use this criterion as a Pareto Filter if the design 

space has been explored (e.g. DoE).

• Whereas the idea of dominance refers to vectors in 

criterion space J, the idea of efficiency refers to points 

in decision space x.

Dominance versus Efficiency
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Dominance - Exercise

max{range}

min{cost}

max{passengers}

max{speed}

[km]

[$/km]

[-]

[km/h]

7587 6695    3788   8108   5652    6777   5812    7432

321       211     308      278     223      355    401       208

112       345     450      88       212      90      185       208

950       820     750      999     812      901     788      790

#1       #2        #3        #4       #5       #6       #7        #8

Multiobjective

Aircraft Design

Which designs are non-dominated ?  (5 min)

Non-dominated Designs:  #1, #2, #3, #4 and #8

Dominated Designs: #5, #6, #7
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Algorithm for extracting non-dominated solutions:

Pairwise comparison

7587   >   6695

321     >   211     

112     <   345

950     >   820

Score

#1

Score

#2#1 #2

1 0

0 1

0 1

1 0

2 vs 2
Neither #1 nor #2 

dominate each other

7587   >   6777

321     <   355     

112     >   90

950     >   901

Score

#1

Score

#6#1 #6

1 0

1 0

1 0

1 0

4 vs 0
Solution #1 dominates

solution #6

In order to be dominated a solution must

have a”score” of 0 in pairwise comparison

Dominance - Exercise
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Domination Matrix

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

2

0

0

0

0

0

1

Solution 2 dominates

Solution 5

0  0  0  0   1  1  2  0

Shows which solution dominates which other

solution (horizontal rows) and (vertical columns)

Solution 7 is dominated

by Solutions 2 and 8

Row 

j-th row 

indicates

how many

solutions

j-th solution

dominates

Column

k-th column indicates

by how many solutions

the k-th solution is dominated

Non-dominated solutions have a zero in the column !
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Double Peaks: Non-dominated Set

Filtered the

Full Factorial

Set: 3721

Non-dominated

set approximates

Pareto frontier:

79 points (2.1%)
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Simulation Results - Satellites

Global Capacity Cs [# of duplex channels]

10
3
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5

10
6

10
7
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L
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e

c
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c
le

 C
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s
t 
[B

$
]

Iridium simulated

Iridium actual

Globalstar simulated

Globalstar actual

Pareto 

Front

de Weck, O. L. and Chang D.,  ”Architecture Trade 

Methodology for LEO Personal Communication Systems 

“, 20th International Communications Satellite Systems 

Conference, Paper No. AIAA-2002-1866, Montréal, 

Québec, Canada, May 12-15, 2002. 
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Pareto-Optimal vs ND

max (J1)

min(J2)
True

Pareto

Front

Approximated

Pareto Front

D    ND    PO

All pareto optimal points are non-dominated

Not all non-dominated points are pareto-optimal

It’s easier to show dominatedness than non-dominatedness !!!

Obtain

different

points for

different weights
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Lecture Summary

• A multiobjective problem has more than one optimal solution

• All points on Pareto Front are non-dominated

• Methods:

• Weighted Sum Approach (Caution: Scaling !)

• Pareto-Filter Approach

• Methods for direct Pareto Frontier calculation next time:

• AWS (Adaptive Weighted Sum)

• NBI (Normal Boundary Intersection)

The key difference between multiobjective optimization

methods can be found in how and when designer

preferences are brought into the process.

…. More in next lecture
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Remember ….

Pareto Optimal means …..

“Take from Peter to pay Paul”
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